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Abstract—Age-of-information is a metric that quantifies the
freshness of information obtained by sampling a remote sensor.
In signal-agnostic sampling, sensor updates are triggered at
certain times without being conditioned on the actual sensor
signal. Optimal update policies have been researched and it is
accepted that periodic updates achieve smaller age-of-information
than random updates. We use the stochastic network calculus
to contribute a study of a signal-aware policy, where updates
are triggered by a random sensor event. By definition, this
implies random updates and as a consequence inferior age-of-
information. Considering a notion of deviation-of-information as
a signal-aware metric, our results show, however, that event-
triggered systems can perform equally well as time-triggered
systems while causing smaller mean network utilization.

I. INTRODUCTION

We consider a system where a remote sensor is sampled

and the samples are transmitted via a network to a monitor.

A model of the system is shown in Fig. 1. The signal C(t)
generated by the sensor changes randomly over time t and

the nth sample is taken and sent to the network at time

A(n). We investigate two different sampling policies. In a

time-triggered system, the sampling process is agnostic to the

signal and samples are taken after a certain amount of time has

elapsed. In an event-triggered system, the sampler is signal-

aware and whenever the signal change with respect to the

last sample exceeds a threshold, a new sample is generated.

Sample n has network service requirement Si(n) at queue

i and it departs from the network to the monitor at time

D(n). The monitor does not have a priori knowledge of the

distribution and parameters of the sensor signal C(t). Hence,

it relies only on the most recent update received, i.e., at time t
sample n∗ = max{n : D(n) < t} provides the sensor reading

C(A(n∗)) generated at time A(n∗).
A key performance metric of such systems is the age-of-

information (AoI) that quantifies the freshness of information

at the monitor. The AoI is defined as Δ(t) = t − A(n∗). An

example of the progression of the AoI over time is shown

in Fig. 2 [1]. The information of sample n generated at time

A(n) ages with slope one with t. The monitor selects the

most recent sample n∗ that it has received. This leads to the

linear increase of Δ(t) with discontinuities whenever a fresher

sample becomes available at the monitor and the AoI is reset

to the network delay.

The notion of AoI has been introduced in vehicular net-

works [1]–[4]. It has emerged as a very active area of research,

being of general importance for a variety of applications in the

A(n) D(n)

sampler networksensor

C(t)

monitor

C(A(n))

Fig. 1. System model. At time A(n) the nth sample of the sensor signal C(t)
arrives at a network of queues, with service times Si(n). At time D(n) the
sample departs from the network to a monitor, conveying the signal C(A(n)).

areas of cyber-physical systems and the Internet of Things.

There, particular challenges arise in networked feedback con-

trol systems [5]–[7]. Recent surveys are [8], [9].

A general objective of AoI research is to find update

policies that minimize the AoI. Common policies are periodic

sampling, random sampling, and zero-wait sampling [2], [10],

[11]. The effects of periodic and random sampling on the AoI

have been studied in-depth using models of D|M|1 and M|M|1
queues and variants thereof [2], [12]–[14], and it is universally

accepted that periodic sampling outperforms exponential, ran-

dom sampling. Zero-wait sampling uses A(n + 1) = D(n)
for all n ≥ 1, i.e., reception of sample n by the monitor

triggers generation of sample n+ 1. This avoids queueing in

the network entirely and achieves good but not necessarily

optimal AoI [10], [11]. Zero-wait sampling differs, however,

from our system in Fig. 1 as it requires feedback of network

state information.

Different from these signal-agnostic policies, we consider a

signal-aware policy [8], [15], [16], where samples are gener-

ated in case of a defined, random sensor event. At first sight,

this brings about random updates, which may be assumed

to have worse AoI performance than time-triggered, periodic

updates. Noticing that AoI is a signal-agnostic metric, this may

not be unexpected. We define a deviation-of-information (DoI)

metric Φ(t) = C(t)−C(A(n∗)) that matches the definition of

AoI Δ(t) = t−A(n∗), but replaces age by the actual deviation

of the monitor’s signal estimate from the sensor signal C(t).

We employ a max-plus queueing model and stochastic

methods of the network calculus to derive bounds of tail

delays [17]–[20]. We contribute solutions for AoI and DoI

of time- and event-triggered systems. Simulation results that

confirm the tail decay rates of our analytical bounds are

included. Our results enable finding update rates that minimize

the AoI or DoI, respectively. Interestingly, the optimal update

rate may differ with respect to the goal of AoI or DoI

minimization. While the event-triggered system has larger AoI,
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Fig. 2. Progression of the age-of-information Δ(t) over time t. A(n) and
D(n) denote the network arrival and departure time stamps of sample n.

our evaluation shows that it requires a lower average update

rate to achieve DoI performance similar to the time-triggered

system.

The remainder of this work is structured as follows. In

Sec. II we give an overview of related works. Our basic model

of a system that is triggered by sensor events is developed in

Sec. III where we also define suitable performance metrics.

In Sec. IV we derive a lemma that is essential for our

investigation of DoI. As an immediate corollary this lemma

provides tail bounds of delay and AoI of time-triggered and

event-triggered systems. We obtain our main result for the DoI

in Sec. V. Brief conclusions are presented in Sec. VI.

II. RELATED WORK

The notion of AoI as a performance metric and its relevance

to a wide range of systems have attracted significant research.

During the past decade, AoI results of a catalogue of queueing

systems have been accomplished [8], [9], [12]. Commonly,

the time-average of the AoI, that can be visualized by the

area under the curve in Fig. 2, is derived. Further, the peak

AoI [14], [21], that is the maximal AoI observed immediately

before an update is received, and the tail distribution of the

AoI [22]–[26] have been studied. In this work, we consider

the peak AoI and like [22], [23], [25] we employ techniques

from the stochastic network calculus [17]–[20] to estimate tail

probabilities.

The starting basis of our work are a number of studies that

compare the impact of periodic versus exponential sampling on

the AoI. Optimal update rates that minimize the average AoI

are considered in [2] for M|M|1, D|M|1, and M|D|1 queues.

It is observed that the random arrivals of the M|M|1 queue

lead to a 50% increase of the AoI compared to the D|M|1
queue. For last-come first-served queues with and without

preemption [12] reports accordingly that the AoI of the D|M|1
queue outperforms the M|M|1 queue. The AoI of GI|GI|1|1
and GI|GI|1|2* queues is investigated in [13] and results are

presented for deterministic arrivals and deterministic service,

respectively. A comparison of periodic arrivals and Bernoulli

arrivals in wireless networks [14] shows that periodic arrivals

outperform Bernoulli arrivals considering average AoI and

peak AoI. These results indicate that random sampling may

in general perform worse than periodic sampling. A plausible

implication is that event-triggered systems may be inferior to

time-triggered systems.

While the AoI of a sample increases linearly with time,

the actual validity period of that sample depends on the

future progression of the sensor signal. Taking this aspect

into account appears essential for evaluation of event-triggered

systems. A number of works employ a non-linear aging

function to represent the value-of-information over time, see

the survey [8]. The evolution of a random sensor signal can,

however, not be modeled by a deterministic function.
Sampling governed by an external random process is con-

sidered in energy-harvesting systems, where random energy

arrivals trigger sensor updates, see [8] for an overview. Dif-

ferent from these works, the event-triggered systems that we

consider are signal-aware, i.e., the progression of the signal

itself triggers sensor updates.
More closely related to our work are a number of studies

on remote estimation of the state of a linear plant with

Gaussian disturbance via a network [5]–[7]. In [5] geometric

transmission times with success probability p are assumed,

whereas [7] considers an erasure channel with loss probability

1 − p and unit service time, and [6] investigates scheduling

for a cellular network. The common target is to minimize the

mean-square norm of the state error at the monitor. It is shown

that this can be expressed by a non-decreasing function of the

AoI, referred to as age-penalty function in [7] and expressed

as value-of-information in [6]. The result is an equivalent

AoI minimization problem [5], [7] that is signal-agnostic. AoI

minimization is studied in [2], [10], [11].
Remote estimation of Wiener processes using signal-aware

sampling is analyzed in [15] and generalized to Ornstein-

Uhlenbeck processes in [16]. Samples are generated whenever

the instantaneous estimation error exceeds a threshold. The

policy is proven to minimize the time-average mean-square

error of the estimate. For signal-agnostic sampling it is shown

that the problem can be recast as AoI minimization. Generally,

the policies that are investigated include an adapted zero-wait

condition, where a new sample is generated only after the

previous sample is delivered, i.e., A(n + 1) ≥ D(n) for all

n ≥ 1. This avoids the problem of waiting times in network

queues but requires feedback information that is not included

in our system model, see Fig. 1.

III. SENSOR MODEL AND PERFORMANCE METRICS

We model the sensor signal as a random process and define

the performance metrics peak AoI and DoI at the monitor.

A. Sensor Model
We consider a sensor that detects the occurrence of defined,

random events indexed n ∈ N in order. Time t ∈ R0+ is

continuous and non-negative. We denote E(n) the time of

occurrence of event n ≥ 1, and define E(0) = 0. For all n ≥ 1
it holds that E(n) ≥ E(n− 1) and I(n) = E(n)−E(n− 1)
are the inter-event times. The event count

C(t) = max{n ≥ 0 : E(n) ≤ t}, (1)

denotes the cumulative number of events that occurred in

(0, t]. By definition C(t) ∈ N0, C(0) = 0, and C(t) is non-

decreasing and right-continuous.
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The sensor is part of the system model in Fig. 1. Depending

on a defined trigger, time or event, the sensor is sampled and

an update message that contains the current event count C(t)
is sent. The update messages are indexed n ∈ N and we denote

A(n) and D(n) their arrival time to the network and departure

time from the network, respectively. For convenience, we

define A(0) = D(0) = 0, A(ν, n) = A(n) − A(ν), and

D(ν, n) = D(n) − D(ν) for n ≥ ν ≥ 0. Generally for all

n ≥ 1 it holds that D(n) ≥ A(n) for causality.

In a time-triggered system, update messages are sent by the

sensor at times A(n) = nw for n ≥ 1 where w ∈ R+ is

the width of the update interval. In an event-triggered system,

update messages are sent whenever the number of events since

the last update exceeds a threshold α ∈ N. This happens at

times A(n) = E(nα) for n ≥ 1. We assume that the monitor

does not have any other, a priori knowledge of the random

sensor process. In particular, it does not know the distribution

nor any moments of the sensor process.

Practical examples of our system range from networked

leak or overflow sensors, alert counters and alert aggregation

in cloud and network operations, to people counting sensors,

e.g., at emergency exits. More general sensor models may

include processes C(t) that are not non-decreasing. Examples

include Gaussian noise and Wiener processes in [5]–[7], [15]

or Markovian random walks. These may cause additional

difficulties when defining a condition on the process C(t) that

triggers generation of update messages A(n).

B. Definition of Performance Metrics

The network delay, respectively, the sojourn time of mes-

sage n ≥ 1 can be written as

T (n) = D(n)−A(n). (2)

A common definition of AoI at time t > D(1) is Δ(t) = t−
maxn≥1{A(n) : D(n) < t}. This definition matches [23] with

the minor difference that we define Δ(t) as a left-continuous

function. Thus, the peak AoI of update n ≥ 1 follows as

Δ(n) = D(n+ 1)−A(n). (3)

Complementary to the AoI that is signal-agnostic, we define

a signal-aware deviation-of-information (DoI) metric Φ(t) =
C(t) − maxn≥1{C(A(n)) : D(n) < t} for t > D(1). The

DoI is the deviation of the current sensor signal from the latest

value received by the monitor. The peak DoI of update n ≥ 1
is

Φ(n) = C(D(n+ 1))− C(A(n)), (4)

that is attained at the departure time of update message n+1
when the monitor uses the information of update n for the last

time.

IV. DELAY AND AOI STATISTICS

In this section, we define the queueing model and its statis-

tical characterization. We derive a lemma for delay and AoI

that is key to our later analysis of the DoI. This lemma also

provides statistical delay Tε and AoI bounds Δε that satisfy

P[T (n) > Tε] ≤ ε and P[Δ(n) > Δε] ≤ ε, respectively.

A. Queueing Model

We model queueing systems and networks thereof using a

definition of a max-plus server [27, Def. 1] that is adapted

from the definition of g-server from [17, Def. 6.3.1].

Definition 1 (Max-Plus Server). A system with arrival process
A(n) and departure process D(n) is a max-plus server with
service process S(ν, n) if it holds for all n ≥ 1 that

D(n) ≤ max
ν∈[1,n]

{A(ν) + S(ν, n)}.

The general class of work-conserving, lossless, first-in first-

out (fifo) queueing systems satisfies the definition of max-plus

server with service process S(ν, n) =
∑n

m=ν L(m) where

L(m) ∈ R+ is the service time of message m ≥ 1 [27,

Lem. 1]. This includes G|G|1 queues [17, Ex. 6.2.3]. Since

any tandem of max-plus servers is a max-plus server, too, the

model extends naturally to networks of queues.

By insertion of Def. 1 into the definition of network

delay (2) it follows readily for n ≥ 1 that

T (n) ≤ max
ν∈[1,n]

{S(ν, n)−A(ν, n)}. (5)

Similarly, for the peak AoI (3) we obtain for n ≥ 1 that

Δ(n) ≤ max

{
max

ν∈[1,n]
{S(ν, n+ 1)−A(ν, n)},

S(n+ 1, n+ 1) +A(n, n+ 1)

}
. (6)

B. Statistical Characterization

We derive statistical tail bounds using Chernoff’s theorem

P[X ≥ x] ≤ e−θxMX(θ), (7)

for any θ > 0. Herein, θ is a free parameter, MX(θ) = E[eθX ]
is the moment generating function (MGF) of the random

variable X , and x is an arbitrary threshold parameter. In our

analysis, x, X are measured in units of time, e.g., msec., and

θ has corresponding units of time−1. We will frequently use

that MX+Y (θ) = MX(θ)MY (θ) for statistically independent

random variables X and Y .

We characterize the MGF of arrival and service processes by

(σ, ρ)-envelopes defined in [17, Def. 7.2.1]. These are adapted

to max-plus servers in [27, Def. 2]. We use arrival processes

with independent and identically distributed (iid) increments

A(n−1, n) for n ≥ 1, including deterministic increments as a

special case. For iid increments the parameter σA = 0 and the

arrival process is characterized by an envelope rate ρA > 0.

Definition 2 (Service and Arrival Envelopes). Each of the
following statements for all n ≥ ν ≥ 1 and θ > 0. A service
process, S(ν, n), has (σS(θ), ρS(θ))-upper envelope if

E
[
eθS(ν,n)

]
≤ eθ(σS(θ)+ρS(θ)(n−ν+1)).

An arrival process, A(ν, n), has ρ
A
(θ)-lower envelope if

E
[
e−θA(ν,n)

]
≤ e−θρ

A
(−θ)(n−ν),

3



and ρA(θ)-upper envelope if

E
[
eθA(ν,n)

]
≤ eθρA(θ)(n−ν).

Next, we obtain bounds of the MGF of delay and AoI that

are an essential building block of the following derivations.

Lemma 1 (MGF bounds of delay and AoI). Given arrivals
A(n) with iid increments and envelope parameters (ρ

A
, ρA) at

a max-plus server S(ν, n) with envelope parameters (σS , ρS).
For any θ > 0 that satisfies ρ

A
(−θ) > ρS(θ) it holds for the

MGF of the delay T (n) for any n ≥ 1 that

MT (θ) ≤ eθ(σS(θ)+ρS(θ))

1− e−θ(ρ
A
(−θ)−ρS(θ))

,

and for the MGF of the AoI Δ(n) for any n ≥ 1 that

MΔ(θ) ≤ eθ(σS(θ)+2ρS(θ))

1− e−θ(ρ
A
(−θ)−ρS(θ))

+ eθ(σS(θ)+ρS(θ)+ρA(θ)).

Proof. We first show the derivation of the MGF of the delay.

The MGF of the AoI follows similarly.

a) Delay: We estimate the MGF of the sojourn time

using the approach from [17], [28]. It follows from (5) for

n ≥ 1 and θ > 0 that

MT (θ, n) ≤E
[
eθmaxν∈[1,n]{S(ν,n)−A(ν,n)}]

=E

[
max

ν∈[1,n]

{
eθ(S(ν,n)−A(ν,n))

}]

≤E

[
n∑

ν=1

eθ(S(ν,n)−A(ν,n))

]

=
n∑

ν=1

E
[
eθS(ν,n)

]
E
[
e−θA(ν,n)

]
,

where we used independence of S(ν, n) and A(ν, n). By

insertion of the envelope parameters we have

MT (θ, n) ≤eθ(σS(θ)+ρS(θ))
n∑

ν=1

(
e−θ(ρ

A
(−θ)−ρS(θ))

)n−ν

≤eθ(σS(θ)+ρS(θ))
∞∑
ν=0

(
e−θ(ρ

A
(−θ)−ρS(θ))

)ν

,

where
∑∞

ν=0 x
ν = 1/(1 − x) if x < 1 concludes the proof,

implying the stability condition ρ
A
(−θ) > ρS(θ).

b) AoI: We use the same essential steps to estimate the

MGF of the AoI. From (6) we have for n ≥ 1 and θ > 0 that

MΔ(θ, n) ≤
n∑

ν=1

E
[
eθS(ν,n+1)

]
E
[
e−θA(ν,n)

]
+E

[
eθS(n+1,n+1)

]
E
[
eθA(n,n+1)

]
≤eθ(σS(θ)+2ρS(θ))

n∑
ν=1

(
e−θ(ρ

A
(−θ)−ρS(θ))

)n−ν

+eθ(σS(θ)+ρS(θ)+ρA(θ)).

Again, ρ
A
(−θ) > ρS(θ) achieves convergence if n → ∞.
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Fig. 3. Sojourn time bounds of the time-triggered system and the event-
triggered system with exponential inter-event times, exponential service times,
and parameter α = 1. In this case, the time-triggered system is a D|M|1 queue
and corresponding simulation results are shown for comparison, and the event-
triggered system is an M|M|1 queue that has a known tail distribution.

C. Statistical Performance Bounds

Statistical delay and AoI bounds follow as an immediate

corollary of Lem. 1 and Chernoff’s theorem (7). Specifically,

we have for the delay for any n ≥ 1 and θ > 0 that

P[T (n) ≥ Tε] ≤ e−θTεMT (θ) =: ε.

Solving for Tε we have that

Tε(θ) =
lnMT (θ)− ln ε

θ
, (8)

and similarly for the AoI

Δε(θ) =
lnMΔ(θ)− ln ε

θ
, (9)

are statistical upper bounds of delay and AoI, respectively,

that are exceeded at most with probability ε. Since Tε(θ) and

Δε(θ) are valid upper bounds for any θ > 0, we can optimize

θ > 0 to find the smallest upper bounds. Next, we evaluate

these bounds for time-triggered and event-triggered systems,

respectively.
1) Time-triggered systems: For a time-triggered system

where update messages are generated at times A(n) = nw
for n ≥ 1 and w ∈ R+ is the width of the update interval, the

envelope parameters in Def. 2 for all θ > 0 are simply

ρ
A
= w, ρA = w. (10)

2) Event-triggered systems: For an event-triggered system,

A(n) = E(nα) for n ≥ 1 and α ∈ N is a threshold parameter.

We assume that inter-event times I(n) are iid with MGF

MI(θ). With A(n) =
∑nα

ν=1 I(ν), it follows for θ > 0 that

ρ
A
(−θ) = −α

θ
ln(MI(−θ)), ρA(θ) =

α

θ
ln(MI(θ)). (11)

If the time between events is exponential with parameter

λ > 0, i.e., mean 1/λ, we have for θ < λ that

MI(θ) =
λ

λ− θ
.

In this case, the sensor signal C(t) is a Poisson counting

process with parameter λ. Further, the time between two event-

triggered update messages is iid Erlang with α and λ.

4



0 10 20 30 40 50 60
60

80

100

120

140

160

180

(a) λ = 0.25

0 10 20 30 40 50 60
60

80

100

120

140

160

180

(b) λ = 0.5

0 10 20 30 40 50 60
60

80

100

120

140

160

180

(c) λ = 1

Fig. 4. Sojourn time and AoI bounds for ε = 10−6 for the time-triggered and the event-triggered system. Inter-event times are exponential with parameter
λ. The update interval w of the time-triggered system and the event threshold α of the event-triggered system are varied, where α = λw achieves the same
mean network utilization for both systems.

3) Service times: We consider messages of variable length

and denote L(n) the service time of message n ≥ 1. It holds

that S(ν, n) =
∑n

m=ν L(m) [27, Lem. 1] and considering iid

service times it follows for θ > 0 that σS = 0 and

ρS(θ) =
1

θ
ln(ML(θ)). (12)

Considering exponential service times with parameter μ > 0
we have for θ < μ that

ML(θ) =
μ

μ− θ
.

We will also consider the case of deterministic message service

times L(n) = l for n ≥ 1 and l > 0 which gives ρS = l.
4) Numerical results: Statistical delay and AoI bounds

follow from (8) and (9), respectively, by insertion of the

envelope parameters (10) or (11), and (12) into Lem. 1. We

compute each bound for a range of values of the free parameter

θ on a log-space and select the smallest bound obtained.
The time-triggered system is a D|G|1 queue or in case of

exponential service times a D|M|1 queue, respectively. The

event-triggered system is of type G|G|1, respectively, Erlang-

α|M|1 in case of exponential inter-event times and exponential

service times. For α = 1 it becomes a basic M|M|1 queue.

For reference, the exact tail distribution of Tε of the M|M|1
queue is known [29] as

ε = e−μ(1−λ
μ )Tε . (13)

In Fig. 3 we display the tail decay of sojourn time bounds

of the time-triggered and the event-triggered system with

exponential inter-event times with parameter λ = 0.5 and

exponential service times with parameter μ = 1. We consider

the case α = 1 for the event-triggered system. For the time-

triggered system we choose parameter w = 2 that achieves the

same average network utilization. For comparison, we include

empirical quantiles from 109 sojourn time samples obtained

by simulation of a D|M|1 queue and the tail distribution of the

M|M|1 queue (13). The tail bounds exhibit the correct speed

of tail decay and show the expected accuracy [20].
In Fig. 4 we compare delay and AoI bounds with probability

ε = 10−6 of the time-triggered and the event-triggered system.
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Fig. 5. Same parameters as in Fig. 4(b) but deterministic service times.

Service times and inter-event times are exponential, where

the service rate is μ = 0.25 and different sensor event rates

λ ∈ {0.25, 0.5, 1} are used. While the arrival process of the

time-triggered system is not affected by λ, the arrival process

of the event-triggered system is Erlang with parameters α and

λ. We show results for different update intervals w and we

set the event threshold α = λw, that is the mean number

of events during an interval of duration w, to achieve the

same average utilization for the time-triggered and the event-

triggered system.

It can be observed that all curves in Fig. 4 show a tremen-

dous increase if w and α become small. This corresponds to

high network utilization that induces queueing delays. In case

of large w and α, the network delay converges to the service

time quantile of a message, whereas the AoI grows almost

linearly due to increasingly rare update messages. Generally, it

can be observed that the event-triggered system shows worse

delay and AoI performance than the time-triggered system.

Similar observations have also been made for periodic versus

random arrivals in [2], [12]–[14]. This is a consequence of the

variability of the arrival process of the event-triggered system

that leads to two different effects: bursts of update messages

cause queueing delays in the network, this effect is dominant

in the left of the graphs in Fig. 4; or the absence of update

messages causes idle waiting, dominant in the right of the

graphs. With increasing λ and α the arrival process becomes

smoother and the performance of the event-triggered system

approaches that of the time-triggered system, see Fig. 4(c).
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Fig. 5 uses the same parameters as Fig. 4(b) with the

exception that the network service times are deterministic,

i.e., the queue is served with a constant service rate of 0.25.

In this case, the time-triggered system is a D|D|1 queue and

the bounds obtained from Lem. 1 correctly identify the delay

Tε = 4 and the AoI Δε = 4 + w for all w > 4. The

event-triggered system is an Erlang-α|D|1 queue. For small α
corresponding to high utilization the burstiness of the arrivals

causes large queueing delays. With increasing α the queueing

delays diminish quickly and the system switches sharply to a

regime, where the AoI is dominated by idle waiting due to too

infrequent update messages.

V. DOI BOUNDS

In this section, we investigate how event-triggered systems

perform compared to time-triggered systems if we consider the

signal-aware DoI metric. We derive statistical bounds of the

DoI of time-triggered and event-triggered systems and show

numerical as well as simulation results.

A. Analysis

We derive statistical bounds of the peak DoI Φε that satisfy

P[Φ(n) > Φε] ≤ ε. The analysis of DoI is more involved

due to the use of the doubly stochastic processes C(A(n))
and C(D(n)). As before, we consider time-triggered systems,

where update messages are generated at times A(n) = nw for

n ≥ 1 and w ∈ R+ is the width of the update interval, and

event-triggered systems, where update messages are generated

at times A(n) = E(nα) and α ∈ N is the event threshold,

respectively. The following theorem uses Lem. 1 to state our

main result.

Theorem 1 (DoI bounds). Given the assumptions of Lem. 1.
Consider events with iid inter-event times I(n) for n ≥ 1 and
denote J(t) the residual inter-event time at time t ≥ 0.

For the DoI Φ(n) of a time-triggered system with update
interval w and envelope parameters (10), it holds for all n ≥
1, θ > 0, and Φε ∈ N0 that

P[Φ(n) > Φε] ≤ MΔ(θ)MJ(A(n))(−θ)(MI(−θ))Φε .

For the DoI Φ(n) of an event-triggered system with thresh-
old α, and envelope parameters (11), it holds for all n ≥ 1,
θ > 0, and Φε ∈ N0 ≥ α− 1 that

P[Φ(n) > Φε] ≤ MT (θ)(MI(−θ))Φε−α+1.

The MGF of the residual inter-event time can be estimated

as MJ(t)(−θ) ≤ 1 for θ > 0. For a memoryless distribution

we also have MJ(t)(−θ) = MI(−θ).
Equating the bound for time-triggered systems in Th. 1 with

ε and considering a memoryless inter-event distribution, we

can solve for

Φε =

⌈
ln ε− lnMΔ(θ)

lnMI(−θ)

⌉
−1,

and for event-triggered systems

Φε =

⌈
ln ε− lnMT (θ)

lnMI(−θ)

⌉
+α− 1.

Proof. We start with the proof for event-triggered systems,

since time-triggered systems pose some additional difficulties.
a) Event-triggered system: By definition of the event-

triggered system we have C(A(n)) = nα. Using (1), we also

have C(D(n+1)) = max{ν ≥ 0 : E(ν) ≤ D(n+1)}. Further,

for the last expression we know that ν ≥ (n + 1)α, since

D(n+1) ≥ A(n+1) and hence C(D(n+1)) ≥ C(A(n+1)) =
(n+ 1)α. By insertion into (4) it holds for n ≥ 0 that

Φ(n) = max{ν ≥ (n+ 1)α : E(ν) ≤ D(n+ 1)} − nα.

With a variable substitution it follows that

Φ(n) = α+max{ν ≥ 0 : E((n+ 1)α+ ν) ≤ D(n+ 1)}.
We use D(n + 1) = A(n + 1) + T (n + 1) and A(n + 1) =

E((n+ 1)α) =
∑(n+1)α

m=1 I(m) to obtain

Φ(n) = α+max

{
ν ≥ 0 :

(n+1)α+ν∑
m=(n+1)α+1

I(m) ≤ T (n+ 1)

}
.

Now, choose some Φε ∈ N0 ≥ α − 1. The case Φ(n) > Φε

occurs iff ν = Φε − α + 1 satisfies the condition above, i.e.,∑(n+1)α+ν
m=(n+1)α+1 I(m) ≤ T (n+ 1). It follows that

P[Φ(n) > Φε] = P

[
T (n+ 1)−

(n+1)α+Φε−α+1∑
m=(n+1)α+1

I(m) ≥ 0

]
.

With Chernoff’s theorem (7) we have P[X ≥ 0] ≤ MX(θ) for

θ > 0 so that

P[Φ(n) > Φε] ≤ M

[
T (n+ 1)−

(n+1)α+Φε−α+1∑
m=(n+1)α+1

I(m)

]
(θ).

The result of Th. 1 follows for iid inter-event times I(m).
Note that for iid inter-event times T (n+1) is independent of

events that occur after A(n+ 1) = E((n+ 1)α).
b) Time-triggered systems: For time-triggered systems,

we have the additional difficulty that the generation of mes-

sages is not synchronized with the occurrence of events.

Instead, at time t ≥ 0, e.g., t = A(n), we only know that

the last event occurred at time E(C(t)) and the next event

occurs at time E(C(t) + 1) = E(C(t)) + I(C(t) + 1). We

denote J(t) the residual inter-event time at time t ≥ 0 until

the next event occurs, i.e., J(t) = E(C(t)+ 1)− t. It follows

that

J(t) = E(C(t)) + I(C(t) + 1)− t. (14)

First, we formalize an intermediate result. Consider some

times t, τ ≥ 0. From (1) we have

C(t+ τ) = max{ν ≥ C(t) : E(ν) ≤ t+ τ}. (15)

For ν ≥ C(t) + 1 we can write

E(ν) =E(C(t)) +
ν∑

m=C(t)+1

I(m)

=t+ J(t) +

ν∑
m=C(t)+2

I(m), (16)

6



0 0.3 0.6 0.9
utilization

40

60

80

100

120

140

160

(a) Deterministic events, exponential service

0 0.3 0.6 0.9
utilization

40

60

80

100

120

140

160

(b) Exponential events, exponential service

0 0.3 0.6 0.9
utilization

0

20

40

60

80

100

120

(c) Exponential events, deterministic service

Fig. 6. AoI and DoI bounds for ε = 10−6 for the time-triggered and the event-triggered system. The update interval width w and the event threshold α are
adjusted to achieve the desired network utilization.

where we use (14) in the second step. By insertion of (16) for

ν ≥ C(t) + 1 into (15) and noting that the case ν = C(t) is

trivial, we obtain that

C(t+ τ)

=max

{
ν ≥ C(t) : J(t)1ν≥C(t)+1 +

ν∑
m=C(t)+2

I(m) ≤ τ

}

=C(t) + max

{
ν ≥ 0 : J(t)1ν≥1 +

C(t)+ν∑
m=C(t)+2

I(m) ≤ τ

}
,

where 1(.) is the indicator function that is one if the argument

is true and zero otherwise.

Next, we insert D(n+1) = A(n)+Δ(n) from (3) into (4)

and with the previous result we obtain by substitution of t =
A(n) and τ = Δ(n) for n ≥ 1 that

Φ(n) = C(A(n) + Δ(n))− C(A(n)) =

max

{
ν ≥ 0 : J(A(n))1ν≥1+

C(A(n))+ν∑
m=C(A(n))+2

I(m) ≤ Δ(n)

}
.

Now, choose some Φε ∈ N0. The case Φ(n) > Φε occurs iff

ν = Φε + 1 satisfies the condition above. It follows that

P[Φ(n) > Φε]

= P

[
Δ(n)− J(A(n))−

C(A(n))+Φε+1∑
m=C(A(n))+2

I(m) ≥ 0

]
.

With Chernoff’s theorem (7) we have for θ > 0 that

P[Φ(n) > Φε]

≤ M

[
Δ(n)− J(A(n))−

C(A(n))+Φε+1∑
m=C(A(n))+2

I(m)

]
(θ).

The result of Th. 1 follows for iid inter-event times J(A(n))
and I(m). We note that in a time-triggered system Δ(n) is

independent of the occurrence of events.

B. Numerical Results

In Fig. 6 we show tail bounds of the AoI and DoI for ε =
10−6. The bounds are derived using Lem. 1 and Th. 1. The

free parameter θ is optimized numerically. We consider a range

of relevant time-triggered and event-triggered systems. In all

cases, the mean rate of sensor events is λ = 0.5 and the mean

service rate of the network queue is μ = 0.25. The width of the

update interval w of the time-triggered system and the event

threshold α of the event-triggered system are varied in unison

so that both cause the same network utilization, that is 1/(wμ)
and λ/(αμ), respectively. We use the network utilization as the

abscissa. For reasons of presentability, we mostly ignore the

integer constraints of α and Δε in the figures.

a) Deterministic events, exponential service: In Fig. 6(a)

we consider exponential network service times with parameter

μ and a deterministic sensor signal, i.e., periodic events with

deterministic inter-event times 1/λ = 2. This degenerate case

serves as a reference. In this case both, the time-triggered

and the event-triggered system, sent updates periodically. We

choose α = λw to ensure the same network utilization

resulting in identical delay and AoI bounds.

The DoI bounds differ slightly since update messages are

synchronized with the occurrence of sensor events in the event-

triggered system but not in the time-triggered system. This

is reflected by the residual inter-event time J(t) in Th. 1.

Since deterministic inter-event times are not memoryless, we

estimate MJ(t)(−θ) < 1 for θ > 0 by 1 and obtain with Th. 1

for the time-triggered system that

Φε =
ln ε− lnMΔ(θ)

lnMI(−θ)
=

λ(lnMΔ(θ)− ln ε)

θ
= λΔε,

where we inserted the MGF MI(−θ) = e−θ/λ of the deter-

ministic inter-event time 1/λ and ignored integer constraints.

In the final step, we substituted the AoI bound Δε (9). This

implies that the update rate that achieves the minimal AoI

also minimizes the DoI in this case. As can be observed in

Fig. 6(a), the minimal AoI bound Δε = 88 and the minimal

DoI bound Φε = 44, corresponding to λ = 0.5, are achieved

for the same network utilization of about 0.3.
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Fig. 7. AoI and DoI distribution for the systems in Fig. 6(b). For the time-triggered system the update interval width is w = 13 and for the event-triggered
system the event threshold is α = 8. These parameters corresponds to a utilization of 0.325 and 0.25, respectively, that minimize the ε = 10−6 DoI bounds.

b) Exponential events, exponential service: The direct

correspondence of AoI and DoI Φε = λΔε observed in

Fig. 6(a) is, however, not given in case of a random sensor

signal. In Fig. 6(b) we show results for exponential instead

of deterministic inter-event times. All other parameters are

unchanged. The same set of parameters has also been used

for Fig 4(b).

For the time-triggered system, that is signal-agnostic, the

AoI is generally unaffected by the choice of the sensor model.

Consequently, the AoI in Fig. 6(b) is identical to Fig. 6(a).

The DoI increases, however, since a varying number of sensor

events may occur during any update interval.

In case of the event-triggered system, the AoI in Fig. 6(b)

is larger than in Fig. 6(a) since the arrivals to the network are

now a random process. Due to the randomness, the AoI of the

event-triggered system is generally larger than the AoI of the

time-triggered system, as also observed in Fig. 4.

Regarding the DoI, the event-triggered system has the

advantage that it is signal-aware and sends update messages

only if needed. Interestingly, both systems, time-triggered and

event-triggered, show comparable minimal DoI. For an intu-

itive explanation consider a burst of sensor events. In this case,

the event-triggered system samples the sensor more frequently

with the goal to improve the DoI. The increased rate of

update messages may, however, cause network congestion and

queueing delays that are detrimental to the DoI and outweigh

their advantage. Overall this appears to cause similar minimal

DoI, however, at a lower average network utilization for the

event-triggered system. Concluding, the u-shaped DoI curves

in Fig. 6(b) show that both systems are feasible and robust

to variations of the network utilization. Configured optimally,

the event-triggered system uses less network resources. It

generates, however, more bursty network traffic.

A related finding in [5], [7] is that the problem of mini-

mizing the mean-square norm of the state error at the monitor

is equivalent to a signal-agnostic AoI minimization problem.

In case of our event-triggered and hence signal-aware system,

Fig. 6(b) does not confirm a similar result. Here, the network

utilization that achieves the minimal tail bounds is different

for the AoI and DoI, respectively.

c) Exponential events, deterministic service: Fig. 6(c)

shows results for the same system as in Fig. 6(b) but with

deterministic service times 1/μ = 4 as also used in Fig. 5. In

this case the time-triggered system is purely deterministic and

achieves a very small AoI that is determined as the sum of

the network service time and the width of the update interval.

Hence, the AoI is minimal in case of full network utilization.

The same applies for the DoI bound.

The event-triggered system shows a much larger AoI that

is due to the randomness of the update messages. For low

utilization, corresponding to a large threshold α, the AoI is

large due to infrequent updates if the sensor signal does not

change much. In case of high utilization, small α, queueing

delays start to dominate and the AoI bends sharply upwards.

Despite the large AoI, the event-triggered system achieves

a similarly good minimal DoI bound as the time-triggered

system. Specifically at low utilization, the DoI bound of the

event-triggered system is much smaller. This is a consequence

of the deterministic network service, where the delivery of an

update message within one message service time 1/μ = 4 is

almost guaranteed, given the utilization is low and queueing

delays are avoided. This is particularly favorable for the event-

triggered system since once the sensor signal changes by more

than the threshold α, an update message can be delivered with

high probability within short time.

d) Decay of tail probabilities: In Fig. 6(b) the minimal

DoI bound of the time-triggered system is achieved for w ≈ 13
and of the event-triggered system for α = 8, corresponding

to utilizations of 0.325 and 0.25, respectively. We investigate

these parameters in more detail in Fig. 7 where we show

AoI and DoI bounds as well as empirical quantiles from 108

samples of the AoI and DoI obtained by simulation. While the

minimal DoI bounds of the time-triggered and event-triggered

systems in Fig. 6(b) are about the same for ε = 10−6, we

see in Fig. 7(a) that the DoI quantiles differ if ε is not small.

Particularly, the DoI approaches α for ε → 1 in case of the

event-triggered system and zero in case of the time-triggered

system. Conversely, the AoI approaches w for ε → 1 in case

of the time-triggered system and zero in case of the event-

triggered system. We do not display tail bounds for the range

8



0 20 40 60 80 100
10-6

10-4

10-2

100

(a) Time-triggered system

0 20 40 60 80 100
10-6

10-4

10-2

100

(b) Event-triggered system

Fig. 8. Empirical AoI and DoI distribution for the system in Fig. 6(b).
Parameters w = 13 and α = 8 minimize the ε = 10−6 DoI bound. It
can be seen how smaller or larger parameters are sub-optimal for ε = 10−6.

of ε in Fig. 7(a). We include the bounds in Fig. 7(b) and

Fig. 7(c) where we show the tail decay. It can be noticed

that the DoI bounds and the empirical DoI quantiles of the

time-triggered and the event-triggered system exhibit the same

speed of tail decay. This dominates the DoI if ε is small

causing similar DoI performance for both systems.

In Fig. 8 we include simulation results for non-optimal

parameters w and α. For smaller w and α we see an im-

provement of the AoI and DoI if ε is not small. This is due to

more frequent update messages. At the same time this causes

increased network utilization and a smaller speed of tail decay.

This consumes the initial advantage when ε becomes small and

leads to worse tail performance. In case of larger than optimal

w and α, update messages are sent less frequently so that

the AoI and DoI increase. This also brings about a reduction

of the network utilization that can, however, only achieve a

small improvement of the speed of the tail decay which is not

relevant for ε = 10−6.

VI. CONCLUSIONS

We considered remote monitoring of a sensor via a network.

The sampling policy of the sensor is either time-triggered

or event-triggered. Correspondingly, sampling is either signal-

agnostic or signal-aware. We derived tail bounds of the delay

and peak age-of-information that show advantages of the time-

triggered system. These metrics do, however, not take the

estimation error at the monitor into account, motivating a

complementary definition of deviation-of-information. Despite

inferior age-, we find that the event-triggered system achieves

similar deviation-of-information as the time-triggered system.

Sending update messages only in case of certain sensor events,

the event-triggered system operates optimally at a lower net-

work utilization and saves network resources.
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