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Abstract—We consider a system with a Base Station (BS)

and multiple mobile/stationary users. BS uses millimeter waves

(mmWaves) for data transmission and hence needs to align

beams in the directions of the end-users. The idea is to avail

regular user-position estimates, which help in accurate beam

alignment towards multiple users, paving way for opportunistic

mmWave schedulers. We propose an online algorithm that uses

a dual opportunistic and fair scheduler to allocate data as well

as position-update channels, in each slot. Towards this, well-

known alpha-fair objective functions of utilities of various users,

which further depend upon the age of position-information, are

optimized. We illustrate the advantages of the opportunistic

scheduler, by comparing it with the previously proposed mmWave

schemes; these schedulers choose one user in each slot and start

data transmission only after accurate beam alignment. We also

discuss two ways of introducing fairness in such schemes, both of

which perform inferior to the proposed age-based opportunistic

scheduler.

Index Terms—Millimeter wave communications, Age of Infor-

mation, Beam alignment, Q-Learning, Markov Decision Process,

Fair Schedulers.

I. INTRODUCTION

With the rapid advancement of technology, the data traf-
fic has increased considerably. Applications like, ultra-high-
definition (UHD) 3D video, virtual and augmented realities,
internet-of-things (IoT) etc., demand high data rates. High data
rates can be achieved either using high bandwidth or transmit
power. One cannot increase power arbitrarily due to health
guidelines. To increase bandwidth, the current trend is to use
Millimeter Waves (mmWaves) in the spectral range of 24GHz
to 40GHz ( [16]).

In mmWave communications, the base station (BS) needs to
align the beam in the direction of the end user. Beam alignment
is a challenging task as the location of the users may not be
known apriori and further could be varying continuously.

Opportunistic schedulers ([1], [3], [6], [7]) are widely used
in wireless networks to take advantage of a ‘kind of diversity
gain’; the channel conditions are independent across slots and
users; in every slot, the BS seeks channel estimate of each
of the users and selects the ‘best’ user for data transmission.
The ‘best’ criterion also includes fairness aspects: some far
away users have bad channels with high probability and
one still needs to allocate a channel to such users to be
fair. Generalized ↵-fair opportunistic schedulers are designed
precisely for this purpose: allocate a channel to deprived users
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when the opportunities are the ‘best’, to an extent depending
upon fairness-level defining parameter ↵.

With mmWave transmissions and its desired accurate beam
alignment, it is difficult to obtain the channel estimates from
all the users. Most of the papers (e.g., [2], [8]–[10]) that we are
aware of select one user in each slot and accurately align the
beam towards the selected user prior to data transfer. Towards
designing mmWave-opportunistic scheduler, we propose to

maintain sufficiently accurate user position updates of each

user at BS (see Fig. 1). With accurate position updates, we
assume the beam alignment times to be negligible. The users
can instead transmit the alignment directions, if there are
privacy concerns.

Fig. 1. Beam alignment for multiple mobile/static users

The wireless users are often mobile, the BS needs reg-
ular updates of the positions of all the users. Our idea is
to design an appropriate dual scheduler that considers all
relevant aspects, age-of-information (AoI), opportunistic and
fair schedules; to be precise, the scheduler has to assign a
user for position-update and another/the same user for data
transfer in each time-slot in an optimal manner. In contrast to
the existing literature on AoI that optimize average or peak
AoI (e.g., [11]–[13]), we directly consider the well-known
↵-fair objective function (e.g., [3], [6]) which is constructed
using time-average utilities of all the users, which in turn are
influenced by individual AoI trajectories.

Our main contributions are: i) using theoretical and some
heuristic (conjecture that needs proof) arguments, we show
that the above mentioned objective function reduces to an
average cost Markov decision process (MDP) problem; ii)
using the well-known MDP solution techniques (e.g., [4]),
we propose an online algorithm for the dual scheduler; iii)
the dual scheduler is parametrized by ↵ and achieves various
levels of fairness depending upon the choice of ↵; iv) we
introduce fairness-concepts in two different ways in non-
opportunistic schedulers, currently studied in literature for

2022 34th International Teletraffic Congress (ITC 34)

93



mmWaves (e.g., [2]); and finally v) the opportunistic and
non-opportunistic schedulers are compared using exhaustive
Monte-Carlo simulations.

II. PROBLEM DESCRIPTION AND BACKGROUND

We consider a network consisting of a Base Station (BS) and
N mobile/stationary users labeled n 2 {1, 2, · · · , N}. Since
millimeter waves (mmWaves) are being used for transmission,
one needs to employ narrow beams and a good link is
established only when the BS is well-aligned with the users;
towards this, we propose to maintain accurate estimates of
various user positions at BS; in other words, we need a
mechanism by which regular position updates of (all) the users
is obtained.
User-position Updates: The time frame is divided into time-
slots, and, exactly one user’s position is updated in each slot.
The age of various position-updates in slot k is represented
by vector Gk = (G1

k, · · · , GN
k ), where G

n
k = 1 implies this

position is just updated. Say user n updates its position in time
slot k, then the vector Gk evolves as follows:

G
n
k+1=1, and, (1)

G
i
k+1=min

�
G

i
k + 1, ḡ

 
for all i 6= n,

where ḡ is the age upper bound at which the beam alignment
deteriorates to a condition such that the utility obtained by that
user during data transfer is close to zero.
Data Scheduler: The remaining time in every slot after
position update is used for data transmission. Here again
exactly one user is allocated the data channel. The main idea of
the paper is to consider an opportunistic and fair scheduler for
this purpose. Towards opportunistic scheduler, the BS aligns
beams in directions of each of the users to obtain their channel
estimates, Hk = (H1

k , · · · , Hn
k ); here H

n
k = A

n
kU

n
k in time-

slot k for user nmi, where factor An
k depends on the age G

n
k

of user n and accounts for the misalignment, while, {Un
k }k

are i.i.d. (independent and identically distributed) across time-
slots for any user n; the distribution need not be the same for
all users. For example, Un

k for any n can depend on Rician
or Rayleigh channel conditions of that user. If G

n
k is high,

there is a possibility of higher error in beam alignment as the
user might have moved significantly; then the factor An

k takes
smaller values with higher probability.
Background on ↵-Fair Schedulers: Fairness is a well-
studied concept in wireless networks (e.g., [1], [3], [6], [7]
and the references therein). Some users are far away from
BS while others are nearby. The far away users have inferior
channel conditions with high probabilities. Thus, any efficient
scheduler (one that maximizes total utility derived because of
overall data transfer) will not be fair to such far away users.
Fair schedulers are proposed to cater to the demands of such
deprived users.

An opportunistic and fair scheduler allocates the channel
to the deprived users, in a controlled manner and when the
‘opportunities’ are the best; this ensures the total utility of the
system is the best possible under the given constraints. The
well-known generalised ↵-fair schedulers exactly achieve this

at various levels of fairness indicated by ↵, by optimizing a
certain parameterised concave function of the average utilities
obtained by each of the users, as below,

sup
�=(�1,··· ,�N )

X

n

�↵ (ūn(�)) with ū
n(�) := E[Hn

�
n(H)] ],

�↵(ū) :=
ū
1�↵1{↵ 6=1}

1� ↵
+ log(ū)1{↵=1}. (2)

This criterion was previously considered for i.i.d. channels
{Hk}, while one can easily extend it to Markov channels (i.e.,
when {Gk} is Markov). In the following, we consider Markov
{Gk}, and, also summarize the solution of the above:

Lemma 1: Assume {Gk}k is a Markov chain with at

maximum finitely many irreducible classes, each having unique

stationary distribution, evolving independently of the data

scheduler decisions {�k}. Then there exists a unique solution

(ū1
↵, · · · , ūN

↵ ) to the following N -dimensional fixed point

equation:

ū
n
↵ = E

d
x0
[Hn

�
n
↵(H)], �

n
↵(H) := ⇧i6=n1

⇢
H

n

(ūn
↵)

↵ �
H

i

(ūi
↵)

↵

�
, (3)

where E
d
x0
[·] is expectation under stationary distribution(s)

and when initialized with x0. Further, �↵ = (�1
↵, · · · ,�N

↵ )
optimizes the ↵-fair criterion (2) for any given ↵.

Proof: This is a well known result in literature (e.g., [1], [6]
for the case when {Hk} are i.i.d.

Given the initial condition x0 and SMR policy d, let ⇡
d
x0

be the stationary distribution (S.D.), an appropriate convex
combination of the S.D.s of various irreducible classes or the
unique one. Then one can view G as i.i.d. variables with this
measure, as the given expectation does not depend upon the
correlations between various time slots of the Markov chains.
And now the proof proceeds as in [1], [6]. ⌅

The hypothesis of the above lemma is satisfied as the age

vector Gk takes finitely many values. An online algorithm
that asymptotically represents ↵-fair scheduler (3) uses the
average utilities derived by the users till slot k, represented by
Ūk = (Ū1

k , · · · , ŪN
k ), and is given by (e.g., [3], [6]):

Ū
n
k+1 = Ū

n
k +

1
k + 1

�
H

n
k+1�

n
k+1 � Ū

n
k

�
,

�
n
k+1 = ⇧i 6=n1

(
H

n
k+1�

Ū
n
k

�↵ �
H

i
k+1�

Ū
i
k

�↵

)
. (4)

In [3], [6], it is proved that the above algorithm converges
weakly to asymptotic utilities (3) for i.i.d. channels. Observe
from (4) that the data scheduler �k+1, depends on the channel
estimates {Hk+1} as well as the average utilities Ūk.
Dual Scheduler: In view of the above, it is appropriate to con-
sider the age-scheduler that depends upon Xk :=

�
Gk, Ūk

�
.

Thus to summarise, we have a dual scheduler in each time
slot (see Fig. 2): (i) firstly age scheduler d(Xk), chooses a
user whose position is to be updated, and then, (ii) the data
scheduler, �(Hk+1, Ūk), chooses a user for data transfer. We
consider Stationary Markov Randomized (SMR) policies for
age-scheduler (e.g., [4]), i.e., d depends only upon Xk. With

slight abuse of notations, we denote any SMR policy by d
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Fig. 2. Time slot in proposed mmWave Network

instead of d
1

. Under such policies, Xk is a Markov chain
which captures the evolution of the entire system.

III. DUAL OPPORTUNISTIC FAIR SCHEDULER (DOFS)

We are interested in solving the following two level op-
timization problem (if �⇤ exists), constructed using average
utilities and ↵-fair objective function defined in (2):

sup
d2D1

NX

n=1

Ū
n
1(�⇤) where �⇤ 2 argmax

�

NX

n=1

�↵

�
Ū

n
1
�

with

Ū
n
1 := lim sup

T!1

1

T

TX

k=1

H
n
k �

n
k , (5)

where the domain D1 includes all the SMR policies.
Conjecture: For any SMR policy d and any �(H, Ū) sched-
uler, we believe that

Ūk(d)! ū
⇤(d,�) a.s.,

where ū⇤(d,�) is a constant a.s. This conjecture can be proved
either using Law of Large Numbers for non-homogeneous
Markov chains ([14]) or using stochastic approximation tech-
niques ([15]). We are in the process of constructing this proof,
for now we assume the conjecture to be true (see Fig. 3).

Fig. 3. Convergence of average utilities to a constant

By the above conjecture, under any SMR policy d the Ūk,
converges to a constant vector a.s., and hence the SMR policy
will start depending only on the first component Gk of state
vector Xk, and then {Hk} is close to a Markov chain; finally
by Lemma 1, the algorithm used in (4) converges to the
optimal ↵-fair objective function under that given SMR policy.
Thus the Problem (5) is equivalent1 to the following, where

1All the statements in this paragraph require proofs, we assume these and
proceed further to derive online algorithm, which is the aim of this short
paper.

the smaller domain D
2 includes SMR policies that depend

only upon Gk:

sup
d2D2

NX

n=1

Ū
n
1(�⇤) where �⇤ 2 argmax

�

NX

n=1

�↵

�
Ū

n
1
�

with

Ū
n
1 := lim

T!1

1

T

TX

k=1

H
n
k �

n
k

a
= E

d
x0

[Hn
�
n] . (6)

Under any d 2 D2, {Gk} itself is a Markov chain, with finite
state space S = {(1, g) or (g, 1) : 1 < g  ḡ}. Hence
stationary distribution(s) exist and hence equality a in the
above; when stationary distribution is unique, the stationary
expectation E

d[.] does not depend upon initial condition x0.
By Lemma 1, the inner optimization problem in (6) is solved

for any d 2 D2, the solution is given by (3) and hence the
problem further simplifies, for any initial x0, to:

sup
d2D2

X

n

ū
n(d) such that for each n, (7)

ū
n(d) = E

d
x0


H

n⇧i6=n1

⇢
H

n

(ūn(d))↵
� H

i

(ūi(d))↵

��
.

Once again by Lemma 1 and Law of Large Numbers for
Markov chains (e.g., [14]), one can re-write the above as the
following average cost MDP problem,

sup
d2D2

lim
T!1

1
T

TX

k=1

E

"
X

n

H
n
k+1⇧i 6=n1

(
H

n
k+1�

Ū
n
k

�↵ �
H

i
k+1�

Ū
i
k

�↵

)#
, (8)

where {Ūk} are updated as in (4).

A. Online Algorithm-DOFS

As mentioned before, we have an average cost MDP (8).
From [5], the optimal policy for average cost MDP can be
derived from that of the discounted cost MDP, when discount
factor � is close to 1. By this observation, we propose an
online algorithm which is based on two iterative algorithms:
a) the well-known Q-learning algorithm (e.g., [17]), and b) the
iterative algorithm that implements (3) as in [3], [6].

In each time slot, first an age-decision is made using ✏-
greedy scheduler, which depends upon the Q-table estimates
(as explained in Algorithm 1). Then an user for data transfer
is chosen using Ūk and Hk+1; the latter are estimated (accu-
rately) after the user-position updates are obtained. Finally all
the variables Ūk+1,Gk+1 and Q-table are updated.

IV. NON-OPPORTUNISTIC DATA SCHEDULER

In [2], the authors consider an optimal user scheduling prob-
lem to minimize the beam alignment overhead in mmWave
networks, while maintaining the desired QoS (rewards related
to data transmission) of each user. In each time slot, the
BS selects one user, based on the information related to
previous schedules and the beam search algorithm finds the
most appropriate beam towards the selected user. The time
spent in aligning the beam, depends upon the gap between
the consecutive slots in which the same user is chosen. As
their purpose is different (maintain QoS, rather than maximize
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Algorithm 1: DOFS-initial condition x0, ✏, ↵, ⌘, �
(1) Initialize Ū0 and Q(x, a) for all x, a and set k = 0,

X0 = x0.
(2) ✏-greedy age-scheduler: With probability ✏,

random (uniform) age-decision (d) is chosen, else
choose d 2 argmaxa2{1,··· ,N} Q(Xk, a) .

(3) Update age of all users, according to the following

G
n
k+1  min (Gn

k + 1, ḡ) if n 6= d and,
G

n
k+1  1 for n = d.

(4) Data schedule: For each n = 1, 2, · · · , N , set

�
n
k+1 =

Y

i6=n

1

(
H

n
k+1

(Ūn
k )

↵
�

H
i
k+1

(Ū i
k)

↵

)
.

(5) Update average utilities, for each n,

Ū
n
k+1 = Ū

n
k +

1

k + 1

�
H

n
k+1�

n
k+1 � Ū

n
k

�
.

(6) Update Q-table entry corresponding to (Xk, d),
using Xk+1 = (Gk+1, Ūk+1):

Q(Xk, d)  Q(Xk, d) + ⌘

✓ NX

n=1

H
n
k+1�

n
k+1

+�max
a

Q(Xk+1, a)�Q(Xk, d)

◆

(7) Check some convergence criteria for Ūk,
(1) If converged, then stop
(2) Else set k  k + 1 and go to Step 2

sum utilities as in Section II), they do not collect channel
estimates from all users in any slot. Thus their scheduler is
non-opportunistic, as opposed to the one discussed in Section
II. Further more, they do not consider fairness.

We propose two ways of introducing fairness into such
schedulers and compare the same with DOFS in Section V.
Dual Non-opportunistic Fair Scheduler (DNOFS): In each
time slot, the scheduler uses the expected conditional channel
estimates of the users {E[Hn

k+1|Gk]} in place of {Hn
k+1}, for

data-decision (in (8)); here we assume H
n
k = L

n
kU

n
k , where

U
n
k are as before and the factor L

n
k depends on the age G

n
k

of user n and characterises the time lost in aligning the beam
(using position update) to the user. The age-scheduler depends
only upon Gk as in previous section. DNOFS is presented in
Algorithm 2, which differs from Algorithm 1 only in step (4).
Single Non-opportunistic Fair Scheduler (SNOFS): We now
consider single decision in each time-slot as in [2], and include
the average utilities so far, Ūk, directly in the objective func-
tion to achieve fairness, i.e., the age-MDP directly optimizes
the following:

sup
d2D2

lim
T!1

1
T

TX

k=1

E

"
X

n

L
n
k+1(G

n
k+1)U

n
k�

Ū
n
k

�↵ 1{n=d(Gk+1)}

#
(9)

Basically, the data and age scheduler coincide here.

Algorithm 2: DNOFS-initial condition x0, ✏, ↵, ⌘, �
Steps (1)-(3) are as in Algorithm 1.
(4) Data schedule: For each n = 1, 2, · · · , N , set

�
n
k+1 =

Y

i6=n

1

(
E[Hn

k+1]

(Ūn
k )

↵
�

E[Hi
k+1]

(Ū i
k)

↵

)

Steps (5)-(7) are as in Algorithm 1.

V. NUMERICAL EXPERIMENTS

We perform exhaustive Monte Carlo simulations for the pro-
posed DOFS, DNOFS and SNOFS algorithms under different
mobility conditions: one where the users are static and other
when the users are mobile. We consider Rayleigh channels
and hence U

n is exponentially distributed with parameter �n.
We set �1 = 1, �2 = 1.8 and discount factor, � = 0.9. We
consider two users, i.e., N = 2.
DOFS: The factor A

n
k , which reflects the age dependent

channel conditions, is considered to be a binomial random
variable as below:

A
n
k =

(
ā with probability p(gnk ),

a else.

For high speed users, the probability of good channel p(g)
decreases fast with the age, g. For the purpose of simulations,
we set ā = 1.1 and a = .3. The values of p(g) can be seen
from Fig. 4 and 5. For example, p(2) is 0.9 for static users
indicating that the information is not deteriorating fast with
time, while for mobile users p(2) = 0.5. In actuality, the
users directly estimate Hk = AkUk when they measure their
channels; also recall the estimates are assumed to be accurate.
DNOFS: As explained in Section IV, the BS does not collect
channel estimates from all the users, it instead utilises the
conditional expected channel estimates, E[Hn

k |Gk] of the
users as in Algorithm 2 and recall Hn

k = L
n
kU

n
k . The factor Ln

k
represents the loss owing to the time spent in beam alignment,
which depends on the age of the previous position-information.
We model it as in the following:

E[Ln
k |Gk = g] =

āp(gn) + a(1� p(gn))

ā
,

so that E[Ln
k |Gk] = E[An

k |Gk]; this is done to ensure fair
comparisons.
SNOFS: Here the algorithm considers single scheduling
decision, i.e., the same user is selected for position-update
and data transfer in any time slot. To bring in fairness, we
consider the objective function as in (9).

Observations

We analyse the case with 2 users and observe the following
(see Fig. 4 and 5): (i) The proposed dual scheduler, DOFS
outperforms the existing schedulers, DNOFS and SNOFS, for
all levels of fairness, ↵; this fact is more clearly evident in
the right side figures that have Ū

1
1 + Ū

2
1 versus ↵; (ii) as the

fairness factor ↵ increases, the utilities of the users close in, for
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all the three schedulers; thus the fair schedulers are effectively
ensuring max-min fairness (that equalizes the utilities of all the
users) as ↵!1.
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Fig. 4. Utilities (left figure) and sum utilities (right figure) versus fairness
parameter ↵ for static users (p(g) = [1, .9, .5, .1]).
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Fig. 5. Utilities (left figure) and sum utilities (right figure) versus fairness
parameter ↵ for mobile users (p(g) = [1, .4, .2, .1])

VI. CONCLUSIONS AND FUTURE WORK

The millimeter wave communications are the way forward
towards supporting the high data-rate applications, as in 5G/6G
networks. However, they pose serious design issues; the most
complicated issue being the design of narrow and accurate
beams directed towards each of the end-users.

Opportunistic schedulers are known to provide fair solu-
tions, with a price of fairness that reduces as the number
of wireless users increase ([18]). Basically, the users with
throughout ‘bad’ channels are allocated the slots when the
opportunities are the ‘best’ (possible as the channel conditions
are independent across users as well as the time slot).

The opportunistic schedulers require (accurate) estimates
of channel conditions of all the users in all the time-slots.
With millimeter wave communications that demand accurate
beam alignment, one cannot derive channel estimates of all
users in every time-slot. We instead propose to maintain a
regular and sufficiently accurate estimates of user positions of
all the users at the base station. Our inherent assumption is that
the beam alignment is possible in negligible time with such
accurate position-updates. We achieve this by optimizing the
well-known alpha-fair objective functions that further depend
upon the age of position-updates of various users.

We finally propose an online-algorithm that simultaneously
implements opportunistic-fair mmWave data-scheduler and
an age-scheduler (that updates the user positions). We also
propose two methods of incorporating (different levels of)
fairness into existing non-opportunistic mmWave-schedulers.
We compare the performance of these schedulers with the pro-
posed opportunistic schedulers; the initial simulation results
show that the latter significantly out-performs the former.

This is just the beginning and we have several questions
for future investigation. How will the opportunistic schedulers
fare with diverse users, some stationary and some mobile;

which type of information (e.g., some estimates of user-
speeds) enhances the design of such schedulers; how does
the age-scheduler depend upon the statistics of the users; it
might be more realistic to consider schedulers over finite-time
horizons, how will the age-scheduler depend upon the time
average utilities till that slot.
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