
Discrete-Time Analysis of Multi-Component

Queuing Networks under Renewal Approximation

Stefan Geißler∗, Stanislav Lange§, Gerhard Haßlinger¶, Phuoc Tran-Gia∗, Tobias Hoßfeld∗
∗Chair of Communication Networks, University of Würzburg, Germany

Email: {stefan.geissler|trangia|hossfeld}@informatik.uni-wuerzburg.de
§Norwegian University of Science and Technology

Email: stanislav.lange@ntnu.no
¶Deutsche Telekom AG

Email: gerhard.hasslinger@telekom.de

Abstract—The analytical and numerical performance eval-
uation of network components and distributed systems has
been a staple in the networking community for many years.
However, the ever growing complexity of modern systems and
the need to gain detailed insights into systems consisting of many,
interconnected components emphasizes the need for an extension
to the classical single-component approach, and although ap-
proaches like Jackson Networks exist, their limited application
scope lags behind the complexity of modern environments. To
this end, we revisit existing models of the common Gi/Gi/1-
∞ queue, extend them to allow the concatenation of multiple
queueing components, and evaluate the approximation error
introduced through renewal approximation. We revisit previously
performed parameter studies and evaluate the approximation
error for a wide range of parameter combinations that we can
solve through the power of modern computing equipment and
efficient numerical implementations of our models. We show the
main impact factors for the linear concatenation of queueing
components as well as the split and superposition of processes.
Our evaluations show that the renewal approximation can be
applied to a wide range of parameters while still obtaining results
within acceptable error margins.

Index Terms—discrete-time analysis, queueing theory, numer-
ical computation, queueing networks

I. INTRODUCTION

The complexity of distributed systems is continuously grow-

ing. Developments that started years ago in the area of

cloud computing, namely virtualization and softwarization,

have led to significant changes in the landscape of commu-

nication networks. First, the introduction of Software-Defined

Networking (SDN) aggregated previously distributed control

plane components into a single, centralized software controller.

Subsequently, the rise of Network Functions Virtualization

(NFV) aims at replacing the remaining hardware appliances

in the data plane with more flexible software solutions. This

migration from ossified hardware middleboxes to software

solutions comes with several advantages, but also introduces

new challenges.

On one hand, software solutions are naturally more flexi-

ble, can be hosted on virtually any Commercial-off-the-shelf

(COTS) hardware component and allow dynamic scaling to

accommodate variable system loads. On the other hand, their

performance is less predictable and they generally are less per-

formant than their hardware counterparts. To circumvent this

performance degradation, previously monolithic middleboxes

are decomposed into multiple, lightweight functions that can

be scaled independently [1]. This decomposition comes with

significant challenges when it comes to the analytical modeling

of such systems using queuing theoretical approaches.

Historically, communication systems have often been mod-

eled by abstracting a complex system of many moving parts

as a single entity, defined by its processing behavior as well

as an external arrival process. This abstraction, however, does

not allow the investigation of bottlenecks or the impact that

scaling individual components has on the overall system per-

formance. To this end, methodologies that allow the evaluation

of queuing networks have been proposed in the past.

However, when considering the analytical or numerical

modeling of such systems, the list of constraints quickly limits

the practical application of many approaches. Methodologies

like Jackson Networks [2, 3] in which service times need to

be negative exponentially distributed and events need to be

processed on a first-come-first-serve basis do provide product-

form solutions to open queuing networks. However, these

constraints often do not hold in practice. Even with the

extensions provided by Gordon and Newell [4] the application

to modern systems remains limited. Further extensions by

Baskett et al. [5] and Gelenbe [6, 7] do provide solutions under

less, or more flexible constraints but still require substantial

abstractions when dealing with real world systems.

In the context of extending the list of methodologies avail-

able for the performance evaluation of queuing networks, this

work proposes models to evaluate waiting time, queue size,

and interdeparture time distributions of interconnected queuing

components. To this end, we build upon existing models by

Tran-Gia and Hasslinger [8, 9] and apply the renewal approx-

imation to allow the interconnection of independent queuing

components. The general feasibility of this approach was

already evaluated in [10]. In this work, we extend our previous

investigation to additional topologies and perform a more de-

tailed parameter study. Specifically, we investigate the impact

of the linear concatenation of components, the superposition,

and split of processes. For each topology type, we perform an

extensive parameter study and compare baseline simulation

results against our model prediction. Results from this study
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can be used to characterize real world systems, which can

be analyzed with the proposed models while incurring a low

error.

The remainder of this work is structured as follows. Sec-

tion II provides an overview of related work and highlights

relevant contributions from previous studies. The model used

for the computations in this work is detailed in Section III.

Section IV describes the methodology applied to obtain the

results subsequently presented in Section V. Following is a

discussion in Section VI, before Section VII concludes this

work and outlines future directions.

II. RELATED WORK

Related to the contributions made in this paper are works

regarding the analysis of queueing networks, as well as re-

search investigating the renewal approximation in the context

of stochastic processes.

Queueing networks have been subject to research for many

years. As early as 1980 Bharath-Kumar [11] investigated the

relation between Jackson’s result [2] and networks of geo-

metric servers. The initial manuscript was later discussed by

Bruneel [12]. At the same time, Whitt introduced the queueing

network analyzer (QNA) [13, 14] that was designed to approx-

imate congestion metrics of queueing networks based on a

two moment approximation of the initial arrival process. This

work has since then been extended [15, 16]. The most recent

installment of the QNA is able to generate approximations of

the mean steady-state performance at each queue of a queueing

network. Shortle et al. [17] cover several approximations in the

context of queueing networks. The book discusses parametric

decomposition, the computation of superimposed and split

processes, as well as the computation of departure processes

based on arrivals.

The heavy-traffic phenomenon [18] for queueing networks

has been investigated by Kim [19]. The authors show that, in

general, the renewal approximation of arrival processes does

not provide enough information about the dependence among

interarrival times. Their numerical experiments show that

highly variable external arrival processes cause a bottleneck

at the last queue with heavy traffic in nine-station tandem

queues, while having little impact in queues with moderate

traffic.

In addition to the previous works, which assume general

processes, there is a large corpus of research based around

Jackson’s result. Based on methodologies like Jackson Net-

works [2, 3], extensions by Gordon and Newell [4] partly

resolve the strict requirements for the applicability of Jack-

son’s initial approach. Additional work by Baskett et al. [5]

and Gelenbe [6, 7] further dilute the strict requirements, but

are often still not applicable when dealing with real-world

queueing networks.

In this work, we aim to extend the already existing, broad

research on queueing networks by performing a significant

parameter study to quantify the approximation error introduced

by applying the renewal approximation. Especially since many

works in the area have been conducted in the 1980s, modern

TABLE I: Notation of random variables and their distributions.

Variable Description

Input Parameters

Ai, ai(k) Interarrival time at component i

Bi, bi(k) Processing time of component i

Model Output

Wi, wi(k) Waiting time of component i

Di, di(k) Interdeparture time of component i

Xi, xi(k) System size of component i at random time

S, s(k) Sojourn time of total system

VA1,A2
, vA1,A2

(k) Superposition of processes defined by inter-
arrival times A1 and A2

Gp,A, gp,A(k) Split processes defined by inclusion proba-
bility p and base process defined by inter-
arrival time A

computing equipment allows us to conduct significantly larger

case studies using numerical approaches.

III. DISCRETE-TIME MODEL

Based on previous works from Tran-Gia [8] and Has-

slinger [9], we develop computational models to approximate

key characteristics of open queueing networks, including su-

perposition and splitting of processes.

A. Interdeparture Time and Linear Concatenation

We start by computing the interdeparture time of events in

the common Gi/Gi/1-∞ queue and use the result to realize a

simple linear concatenation of queueing components.

To disambiguate between random variables (RVs) and dis-

tributions, we use the following convention: uppercase letters

such as A denote RVs, their distribution is represented by

a(k). The corresponding cumulative distribution functions are

denoted as A(k). Accordingly, the model input is composed

of the interarrival time distribution a(k), as well as the service

time distribution b(k). Based on that, waiting time w(k) and

interdeparture time d(k) can be calculated as follows.

To compute the interdeparture time distribution, we first

need to compute the waiting time distribution w(k). This can

be done using Lindley’s equation, in which ∗ denotes the

convolution. Note that this computation is performed for each

component of a queueing network. We hence omit the index

i that denotes the specific component. Instead, the index n

describes the n-th service event and hence wn(k) denotes the

waiting time distribution of the n-th processed arrival.

wn+1(k) = π0(wn(k)∗c(k)) with c(k) = a(−k)∗b(k) (1)

π0(x(k)) =











x(k) k > 0
�0

i=−∞
x(i) k = 0

0 k < 0

The waiting time in steady state is subsequently defined as

w(k) = lim
n→∞

wn(k) . (2)
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The waiting time can then be used to compute the idle time

distribution i(k) via the virtual unfinished work uv(k). The

idle time distribution describes the time a system is idle after

a departure event.

uv(k) = w(k) ∗ c(k) = w(k) ∗ a(−k) ∗ b(k) (3)

i(k) = K · uv(−k) with K−1 =

∞
�

j=1

uv(−j) (4)

Finally, the interdeparture time distribution d(k) can be

computed using the service time distribution b(k), the idle

probability PE , and the idle time distribution i(k).

d(k) = PE · (i(k) ∗ b(k)) + (1− PE) · b(k)

PE =
E[A]− E[B]

E[I]

(5)

Additionally, based on the distributional version of Little’s

Law [20] and the waiting time distribution w(k) we establish

the distribution of the number of elements x(k) present in

the system at random times. This includes elements currently

being processed as well as elements waiting to be processed.

We first compute the sojourn time S of elements based on the

waiting time and the processing time.

s(k) = w(k) ∗ b(k) (6)

We then define the number of elements X in the system at

a random time as

x(k) = xS,A(k) . (7)

where xS,A(k) describes the probability of observing k

arrivals whose interarrival time is distributed according to

a(k) during an observation interval whose length is distributed

according to the sojourn time S with s(k). The computation

of xS,A(k) has been discussed in detail in [21].

Using Equations (1) to (7), all parameters to establish a

model for the linear concatenation of Gi/Gi/1-∞ queueing

systems can be evaluated. Figure 1 shows an exemplary chain

of length n, in which the departure process Di of component

i is reused as the arrival process Ai+1 of component i + 1.

The parameters shown in red indicate model inputs, the ones

noted in black represent model outputs.

ýÿ þÿ �ÿ = ýĀ þĀ �Ā … þ� ��ý�ÿÿ
þÿ

ÿĀ ÿ�
þĀ þ�

S

Fig. 1: System and parameter overview in linear concatenation

environment.

At this point, we introduce the renewal approximation as

the departure process dictated by D1 is, in general, not a

renewal process, meaning the sequence D1,t1 , D1,t2 , D1,t3 , ...

of instances of the RV D1 are not independent and identically

distributed (IID). Instead, for all but the common M/M/n-∞

waiting and M/M/n-0 loss systems with Markovian arrival and

service processes, the departure process D1 is expected to

exhibit some form of autocorrelation. This assumption of the

renewal property of D1 leads to the error introduced in the

model, which is investigated and quantified later in Section V.

B. Split

In addition to the linear concatenation of queuing com-

ponents, we also provide equations to establish the split of

departure processes that can be leveraged to model scenarios

as the one shown in Figure 2. Here, the departure process D1

is split into multiple separate processes whereas each element

of D1 may join exactly one of the resulting, partial processes

with a specific probability p.

ÿĀS

þÿ �ÿÿÿ
þÿ

���,�ÿ = ýĀ þĀ �Ā
þā �ā

þĀ ÿā
þā�ÿ−��,�ÿ = ýā

ýÿ ��
ÿ − ��

Fig. 2: System and parameter overview in split environment.

The time between occurrences in a resulting process with

interarrival time distribution gp,A(k), based on the initial full

process A and the probability to join this partial process p,

can then be calculated as

gp,A(k) =
∞
�

i=0

geom0(i, p) · a
∗i(k) . (8)

Thereby, geom0(i, p) represents the probability of observing

i failures before the first success with success probability p.

a∗i denotes the i-fold convolution of a(k) with itself. Each

term of the sum can hence be read as the probability for i

events to be removed from the original process multiplied by

the probability of the sum of i instances of the RV A to assume

k. This dispersion of elements of a non-IID input process A

into two or more partial processes results in processes that

also violate the IID property. However, a split substream of a

renewal process is again renewal.

An alternative, more complex but slightly more efficient

computation of the same partial process has been proposed in

the past by Hasslinger and Rieger [9].

C. Superposition

Analogously, the superposition, meaning the result of join-

ing two or more processes, can occur in a queuing network,

as shown in Figure 3. In this scenario, the elements of

two independent processes D1 and D2 are merged into a

superimposed process with the interarrival time distribution

vD1,D2
(k), that contains all elements of both D1 and D2.

This process is then used as an arrival process for subsequent

queuing components. The time between occurrences in the

superimposed process can be computed using the minimum of
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Fig. 3: System and parameter overview in superposition envi-

ronment.

the recurrence times of the original processes. The recurrence

time distribution of a process D can be computed as

r(k) =
1−D(k)

E[D]
. (9)

The minima D = min(D1, . . . , Dn) of n RVs D1, . . . , Dn

has the following cumulative distribution function.

D(k) = 1−

n
�

i=1

(1−Di(k)) (10)

Then, VD1,D2
can be expressed as follows.

VD1,D2
= 1−min(R1, R2) (11)

Thereby, R1 and R2 are the RVs denoting the recurrence

time of the processes D1 and D2, respectively.

IV. METHODOLOGY

Based on the computational rules introduced in the previous

section, we are now able to compute several relevant parame-

ters of a wide range of queueing networks. In the following, we

detail the general methodology of how we obtained the results

and cover the exact key performance indicators (KPIs) we take

into account to evaluate the quality of our approximation.

A. Experiment Environment

To generate the results presented in Section V, we imple-

mented the computational rules introduced earlier in the R pro-

gramming language. As most rules imply a numerical solution,

we cap the computational accuracy at 0.99999, meaning we

terminate the computation once enough probability mass has

been accumulated or two compared distributions differ only

by 10−5 after summing up the probability differences for all

values contained in either distribution. Using this implementa-

tion, we can compute several KPIs for different, interconnected

queueing components. In addition, we perform simulations of

equivalent systems using r-simmer [22] to establish baseline

values to compare our modeling results against.

B. Evaluated Key Performance Indicators

The first KPI we investigate for all evaluated topologies is

the sojourn time distribution s(k) of specific paths of length

n in a queuing network. To this end, we compute the sojourn

time based on the waiting time distributions wi(k) and the

processing time distributions bi(k) of all components 1 ≤ i ≤
n on the path.

s(k) = w1(k) ∗ b1(k) ∗ w2(k) ∗ b2(k) ∗ ... ∗ wn(k) ∗ bn(k)

= s1(k) ∗ s2(k) ∗ ... ∗ sn(k)
(12)

Note again that the resulting sojourn time neglects potential

autocorrelations in wi(k) due to the assumption of the renewal

property regarding all involved processes.

In addition to the sojourn time, we also provide results for

the distributions of the system size, meaning the total number

of customers in the last component of the system, as well as the

interdeparture time distribution di(k) of specific components

in a queuing network as computed in Equation (1).

As for the system size X , we apply the distributional variant

of Little’s Law [20] to compute the number of customers in

the system at random times, as defined in Equation (7).

For all three KPIs, we examine the Kolmogorov-Smirnov

distance between distributions obtained via simulations and

the model, respectively. Note that additional metrics have been

computed and evaluated, but are omitted here due to space

constraints and to allow a concise presentation of results.

V. PARAMETER STUDY

After detailing the computational rules required to calculate

approximations for several key performance indicators, the

following section presents results obtained by means of an

extensive parameter study. The goal is to improve our under-

standing of the relationship between the approximation error

and the parameters of the queuing network to be investigated

with respect to various KPIs. To this end, we present results

comparing model approximations with baseline simulation

results to quantify the error for a broad range of topologies

and queuing system parameters.

A. Linear Concatenation

The first mode of interconnection investigated is the linear

connection of multiple queuing components. Figure 1 shows

the structure of linearly concatenated systems investigated in

this section.

Input parameters that are defined during the parameter

study are shown in red and encompass the initial arrival

process A1 as well as the service processes of each of the

queuing components B1 to Bn. Additionally, we vary the

total number of queuing elements to be concatenated. Table II

shows the range of parameter values evaluated for the linear

concatenation scenario. For both processes A1 and Bi, the

negative binomial distribution has been selected for its ease of

parameterization using the mean and coefficient of variation.

The mean value for the initial arrival process A1 has been kept

at E[A] = 100 for all experiments to eliminate unforeseen

interactions between E[A] and E[B]. By varying only E[B],
we can adjust the load experienced by the system while

maintaining control over process interactions. Note that all

experiments have been repeated while multiplying all means
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TABLE II: Parameter values used during the parameter study.

RV, Value Parameter Values

A1 Negative binomial distribution
cA ∈ {0.5, 1, 2, 3, 5}
E[A] = 100

Bi Negative binomial distribution
cB ∈ {0.5, 1, 2, 3, 5}
E[B] ∈ {10, 30, 50, 70, 90}

No. of linear components n ∈ {1, 2, ..., 20}

Prob. to remain during split pr ∈ {0.1, 0.2, ..., 0.9}

by a factor of 10, and it was established that the absolute values

have no impact on the observations presented in this work.

Note further that, in order to keep the number of parameter

combinations manageable, we assign the same E[B] and cB
to all processing units in a chain of n components. In addition

to the mean service times E[B], we vary both the coefficient

of variation of the initial arrival process cA and of the service

process cB . For the parameter study, we conduct experiments

using all available parameter combinations that can be formed

by the ranges provided in Table II, ultimately evaluating 2,500

parameter combinations with 10 simulation repetitions each,

resulting in 25,000 data points.

a) Sojourn Time: Figure 4 shows aggregated results

regarding the sojourn time of various linearly concatenated

systems in green. We show the main effects plot for all

input parameters in Figure 4a. The y-axis shows the mean

and 95% confidence intervals for the Kolmogorov-Smirnov

distance (KSD) between the simulation and model output.

The different input parameters are shown along the x-axis,

starting with the system load in the top left. The data shows

a continuously growing KSD with an increasing slope as the

load approaches 1. These observations are due to the growing

effects of the autocorrelation within the system due to queuing

that become more prominent at higher loads. Next, in the top

right, we show the KSD trend for increasing coefficients of

variation of the arrival process cA. Here we see that, except

for cA = 1, higher coefficients of variation lead to a larger

approximation error. The lower error for cA = 1 occurs due

to the fact that for a coefficient of variation of 1 the negative

binomial distribution is identical to the geometrical distribution

and hence exhibits memorylessness, effectively resulting in a

Markov arrival process. The rate at which the error grows

is declining as the coefficient of variation approaches higher

values. This is explained by the effect high values of cA have

on the system. With increasing cA, the overall variability of

all arrival, and hence departure, processes increases as well.

This in turn reduces the impact of the error introduced by the

renewal approximation, as the inherent variability dilutes the

neglected autocorrelation of departure processes.

Next, the impact of the length of a concatenated chain

is shown in the bottom right. Similar to the coefficient of

variation of the arrival process, the chain length induces a

continuously growing approximation error that grows quickly

for shorter chains and exhibits a decreasing growth rate as

the chain length approaches higher values. This is most likely

the most intuitive result, as longer chains simply provide

more opportunity to introduce approximation errors. For each

component of a linear system, the model introduces the same

assumption of no relevant autocorrelation. The longer the

chain, the larger the error produced through this assumption

becomes. Similarly to increasing cA, when increasing the

number of components in the chain, the additional error due

to one additional component declines. Again, this is due to the

fact that the impact of the neglected autocorrelation decreases

for components later in the queue. Hence, longer queues tend

to converge against a maximum error instead of diverging.

Finally, the bottom left shows the impact of the coefficient

of variation of the service units cB . Note that all components

in a chain of length n exhibit the same service distribution

to keep the number of parameter combinations in check. The

data shows that cB has negligible impact, as the observed KSD

remains largely stable for all values. This is due to the fact that

the effects of coefficient of variation of the service process cB
even out as customers travel through several service units.

In addition to the main effects plot, Figure 4b shows a

violin plot to outline the distribution of KSD values for each

of the investigated load levels. In addition, the separate data

points are shown, and their color indicates the number of

concatenated components. The violins show the density of

values along the y-axis, the data points indicate trends regard-

ing which chain lengths contribute mass to the distribution

at which KSD values. The different load levels are shown

along the x-axis. In addition, the red markers indicate the

mean (dot) and median (dash). This means the red dots in this

plot correspond to the values shown in the top left subplot

of Figure 4a. The data shows that the distribution of KSD

values gets wider as load increases. However, even for ρ = 0.9,

parameter combinations resulting in small KSD values exist.

Naturally, the trivial combinations, consisting of only one

component, so no concatenation, generate low error values

with a KSD of 0.002 for cA = cB = 0.5. The first non-

trivial parameter combination has been observed with n = 2
components and cA = cB = 0.5. The resulting KSD was 0.01.

In addition, the color coded data points show that longer chains

tend to generate higher approximation errors, confirming the

observation made earlier.

To summarize, ρ, cA, and n are key contributors to the

error when one is interested in estimating the sojourn time in

linearly concatenated systems.

b) System Size: Next, we analyze the system size, mean-

ing the total number of customers in a service unit including

waiting customers as well as customers currently being pro-

cessed. Figure 4a shows the main effects plot of the KSD of the

system size regarding the last component in a chain of length

n. The blue curve indicates the mean observed error as well as

the 95% confidence interval. The top two subplots, showing

the load ρ and the coefficient of variation of the arrival process

cA, exhibit largely the same behavior already observed for the

sojourn time in Figure 4a, but overall values are around three

times higher for the sojourn time. However, the coefficient of
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(b) Violin plot for increasing load.

Fig. 4: Kolmogorov-Smirnov distance between the sojourn time, interdeparture time and system size distribution for the linear

concatenation scenario obtained by means of simulation and numerical approximation. Main effects plot and violin plot for

increasing load. The red markers indicate the mean (dot) and median (dash) in the violin plot.

variation of the service time cB as well as the chain length

n show slightly different behaviors. While the KSD remains

largely stable for increasing cB when examining the sojourn

time, when it comes to the system size, the KSD assumes the

highest observed values for cB = 0.5 and declines from there.

This is an intuitive result, as systems with deterministic service

times will result in systems with maximum autocorrelation

regarding their departure process. In return, systems with high

processing time variations, and hence high cB , will generally

exhibit lower natural autocorrelation and hence decreased

approximation errors. Regarding the chain length n, similar

behavior can be observed. After the minimal observed KSD

for n = 1, the data shows a trend of declining values while

increasing n from two to 20. Since, for the system size Xn, we

are only interested in the last component of a chain of length

n, the n−1 components ahead of the last one are diluting the

error introduced through concatenation. Hence, we observe a

high error for short chains as the error of the last component is

more prominent, as it had fewer preceding stages of dilution,

while the error for longer chains declines due to the increased

variability of the service process resulting from service in more

components.

Finally, the curve depicts the error observed regarding

the interdeparture time of events departing from the final

component in a chain of length n. The data shows that the

error remains small for all evaluated parameter combinations.

This is again an intuitive result, as the computation of the

departure distribution introduced in this work produces ex-

act results. The error is only introduced by neglecting the

autocorrelation of the process when taking into account the

time component. However, as the distribution only takes into

account the probability of interdeparture times occurring, this

is not mirrored in the results.

In order to illustrate the magnitude of the introduced error,

Figure 5 shows the ECDFs of the difference of means. The

color indicates the load ρ, each ECDF encompasses all other

parameter combinations for that load level. The figure shows

the error regarding the prediction via the model. Hence, a

0.00
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E[Xmod] − E[Xsim]

E
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Fig. 5: Difference of means between model and simulation for

the system size at the last component in a chain.

value of E[Xmod] − E[Xsim] = −40 means the model

underestimates the mean by 40. Note that the model does

predict the full distribution instead of only the mean.

The data in Figure 5 shows that there exist both scenarios

in which the model underestimates and overestimates. The

absolute error largely scales with system load, which is an

intuitive observation, as higher load levels generally lead to

higher total mean values regarding the system size X in

both simulation and model. When examining the data, we

observed that the maximum errors were indeed observed for

the worst case parameter combinations inferred from the main

effects plot. Thus, the maximum observed mean deviation of

E[Xmod] = 5.17 and E[Xsim] = 11.05 (-53%) was obtained

for cA = 5, cB = 0.5, n = 3 and ρ = 0.9.

To summarize, short linear chains with high cA, low cB
and high overall system load generally lead to the highest

approximation error regarding the system size X .

B. Split

In addition to the linear concatenation of queuing elements,

scenarios in which a process is divided into two or more

separate streams are relevant in many scenarios like load

balancing or internal request routing. To evaluate the accuracy
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of the renewal approximation in these scenarios, we investigate

the impact of various parameters on the approximation accu-

racy. Figure 2 shows the component layout for the process

splitting scenario. We evaluate a system consisting of three

queuing components that are arranged such that the initial

arrival process is being processed by the first component. The

resulting departure process is then divided into two separate

processes based on the probability to remain pr that dictates

the likelihood of customers being processed by component

two, whereas customers are processed by component three

with the remaining probability of 1− pr.

Figure 6 shows the main effects plot for the observed KSD.

The approximation errors are shown in red for the interdepar-

ture time of the last component, green for the sojourn time

and blue for the system size of the last component. Instead

of the chain length n, the bottom right plot shows the staying

probability pr.

First, looking at the sojourn time, the data shows a near-

linear impact for cA, cB and pr, while the load ρ exhibits

roughly constant behavior up until ρ = 0.7. For higher loads,

a significant increase of the approximation error has been

observed. Note that the overall values are significantly smaller

compared to the values shown in Figure 4a. As the number

of components included in this scenario is small (n = 2) and

constant over all parameter combinations, the overall observed

errors are expected to be smaller. The data for ρ, cA and

cB follows the intuitive expectation, as both high load and

high coefficients of variation lead to an increased waiting

probability, which in return leads to increased autocorrelation.

This autocorrelation is the source of the approximation error

observed in the data. Similarly, probabilistically removing

events from a process generally also removes autocorrelations,

shifting the system closer to our IID assumption. Hence,

the observed KSD increases with a growing probability for

elements to remain a part of the process pr, as shown in the

bottom right facet.

Next, the interdeparture time of customers as they depart

the last component of the system D2, as shown in Figure 2 is

shown in red. It can be seen that for both high and low load

levels, the approximation error is small, while medium load

levels tend to generate higher errors. This is explained by the

fact that, for low load levels, the departure process converges

towards the arrival process while for high load levels the

departure process converges towards the service process. For

medium load levels, the system behavior is “unpredictable”,

and hence leads to larger errors.

cA and cB have opposing effects on the interdeparture time

distributions. While increasing cA reduces the overall approxi-

mation error, increasing cB tend to increase the observed error.

The staying probability pr, once again intuitively affects

the resulting error, as high values lead to lower errors. Since

for pr = 1 the split scenario converged towards a linear

concatenation scenario, the system then follows the same

trends as observed before. Hence, for higher values of pr, the

error introduced through the splitting process becomes more

and more negligible.
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Fig. 6: Main effects plot of KSD values after process splitting.

Finally, the blue curve shows the approximation error when

it comes to the system size of the last component in the

chain, meaning component two in Figure 2. Generally, the

system size behaves similarly to the sojourn time, whereas

the absolute error values are significantly lower compared to

the sojourn time. Further, the system size is far less sensitive

to high load levels as well as coefficients of variation.

C. Superposition

Finally, the last synthetic topology investigated in this work

results in the superposition of processes, as shown in Figure 3.

Here, two independent arrival processes, defined by A1 and A2

experience service by components one and two, respectively.

The resulting departure processes are then superimposed be-

fore the resulting combined process is serviced by component

three. We again investigate the impact of various system

parameters on the observed approximation error.

Figure 7 shows the data obtained for the superposition

scenario. We again show the main effects plot of the inter-

departure time, sojourn time and system size for the relevant

scenario parameters. In this case, this includes the system load

ρ and the coefficients of variation of the arrival processes cA
as well as the service processes cB . Note that the processes

dictated by A1 and A2, as shown in Figure 3, are identical in

all evaluated scenarios. Similarly, the coefficient of variation

for the distributions of B1, B2 and B3 are identical. Finally, in

all parameter combinations we chose E[B3] = 0.5 · E[B1] =
0.5 · E[B2], as this achieves the same system load ρ for all

three components.

In addition to the main effects plot, the top right facet

shows the violin plot for the observed KSD values between the

sojourn times observed in simulation and model, respectively.

To show a more detailed picture of the observed distribution

instead of only mean and confidence intervals, we show the

specific distributions for each of the investigated load levels.

The green markers show the mean (dot) and median (dash)

values, the black markers indicate single observed data points.

The observations in this scenario are, for the most part,

in line with what was observed earlier. System load ρ being

the most significant factor for the approximation accuracy

of the sojourn time as well as system size, with both cA
and cB only having minor, linear effects. The interdeparture
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Fig. 7: Main effects plot of KSD values after process super-

position. Violin plot for observed sojourn time KSD values.

time distribution is largely unaffected by all three parameters.

What stands out is the behavior of the system size in general.

Where the KSD for the system size X was continuously

smaller than the KSD for the sojourn time, it exceeds the

sojourn time for the first time in this scenario. In addition, the

observed confidence interval is significantly larger for all three

parameters. The latter is explained by the increased impact

of the investigated parameters. As all three parameters have

significant impact on the system size approximation accuracy

during the superposition of processes, the observed confidence

intervals naturally grow. As for the overall observed values,

it would be expected for the superposition of processes to

generate relatively small errors, as the superposition of non-

synchronized processes generally moves the result closer to

memorylessness than either of the input processes. This has

for example been shown in [23] and [24] for the superposition

of deterministic processes. However, the inaccuracy introduced

by the approximation is higher than the “advantage” gained

through superposition, hence the errors observed in our pa-

rameter study.

VI. DISCUSSION AND LIMITATIONS

In this work, we examine the approximation error for linear

concatenation, split, and superposition. However, when dealing

with general, open queueing networks, we also need the ability

to incorporate direct and indirect feedback. Hence, elements

may be processed by one of the network’s components and

be either fed back into the same or other components. In

the context of this work, we also examined the impact of

various parameters on the approximation error for this feed-

back scenario. However, the results show that no parameter

combination yields acceptable approximation results. For these

reasons, we decide not to include the model as well as the

results on feedback in this work. In order to provide usable

approximations, further research on modeling the feedback

behavior required by modern systems needs to be performed.

In short, the autocorrelation introduced by feedback is vastly

more complex compared to the other concatenation types. For

example, in a single component system with feedback, a single

event may cycle multiple times before any “fresh” events

arrive at the system. This significantly impacts the departure

process as in an interval like this, several interdeparture times

would follow the same distribution as the service time. Other

periods of the departure process may follow other distribu-

tions, depending on system load, coefficients of variation and

other parameters such as feedback distance (i.e., how many

components are passed before events are fed back into the

system). Hence, this evaluation is omitted here. We invite the

community to tackle this interesting and challenging problem.

Furthermore, our conducted parameter study comes with

one major limitation. In all evaluated scenarios, we assume

all queueing components of a network to have the same

service time distribution. Obviously, this would not hold true

in reality. However, it allowed us to keep the number of

parameter combinations in check. Even with this limitation,

we calculated over 250,000 data points. When allowing every

queueing component (e.g. of a chain of length 20) to exhibit

varying service time distributions, we would end up with

an exponentially higher number of parameter combinations.

The impact of varying processing time distributions within

a queueing network remains for future work. Similarly, the

impact of more complex processing, as well as arrival pro-

cesses, remains content for future research. These include

arrival specific processing, in which processing times differ

between arrivals, but are constant for a single arrival and

all components in the network, as well as arrival processes

exhibiting explicit autocorrelation.

VII. CONCLUSION

In this work, we introduce models that allow the linear

concatenation of queueing components as well as the splitting

and superposition of random processes. These models are

based on the assumption that the departure processes of a

general Gi/Gi/1-∞ queue exhibit the renewal property. This

assumption, however, does not generally hold in practice for

arbitrary processes. According to Burke [25], the only systems

that formally fulfill this property are M/M/1, M/M/n and

M/M/∞ waiting systems as well as their geometric counter-

parts in the discrete-time domain. In this work, however, we

investigate the impact of this assumption when applying the

same principle to the common Gi/Gi/1-∞ waiting system.

We revisit previously proposed models by Tran-Gia [8] and

Hasslinger [9] and extend them to allow the concatenation

of elements. We perform an extensive parameter study to

investigate a broad set of system parameters on the resulting

approximation error. To this end, we design three distinct

scenarios to evaluate the impact of various system parameters

in systems that feature linear concatenation of queues as well

as splitting and superposition of processes. For all scenarios,

we have performed simulations as well as computed our model

output to generate statistically significant comparisons.

Our results have shown that for all concatenation types —

linear, split and superposition — the system load ρ is generally

the most influential factor. As the system load approaches

ρ = 1, the error introduced through approximation becomes

gradually more significant. However, even for load levels close

to 1, the approximate models are able to generate results within
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reasonable margins. The largest deviation observed in our

studies was -53% with E[Xmod] = 5.17 and E[Xsim] = 11.05
when concatenating three queueing systems in a scenario with

high load and an interarrival time distribution with a large

coefficient of variation. Most errors, however, are substantially

smaller. In general, the mean KSD for the interdeparture time

of the last component in a system was smaller than 0.023

across the board. When looking at the total system sojourn

time, the maximum KSD was 0.34 for a chain of length

n = 20, ρ = 0.9, and high coefficients of variation for

interarrival and service time distributions, cA = 5 and cB = 2.

Finally, the maximum approximation error observed regarding

the system size, meaning the number of elements present, at

the last element within a concatenated system was 0.22 for

ρ = 0.9 and cA = 5, cB = 0.5.

Generally, the approximation allows the evaluation of com-

plex queueing systems, like microservice architectures, VNF

chains or other interconnected, distributed systems. However,

when applying this approximation, we always have to keep

in mind the error we are willing to accept and the metric we

are interested in. While the renewal approximation has only

minor impact on the predicted number of elements present in a

specific component at one time, the sojourn time may include

a significant approximation error, depending on the system

configuration and input parameters. For the future, in addition

to the open issues outlined in the discussion, we aim at

extending our parameter study and want to establish a library

of topologies and configurations that allows the estimation of

the expected error beforehand.
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