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Abstract—Small IoT devices, such as drones and lightweight
battery-powered robots, are emerging as a major platform for
the deployment of AI/ML capabilities. Autonomous and semi-
autonomous device operation relies on the systematic use of
deep neural network models for solving complex tasks, such as
image classification. The challenging restrictions of these devices
in terms of computing capabilities, network connectivity, and
power consumption are the main limits to the accuracy of latency-
sensitive inferences. This paper presents ReBEL, a split comput-
ing architecture enabling the dynamic remote offload of partial
computations or, in alternative, a local approximate labeling
based on a jointly-trained classifier. Our approach combines
elements of head network distillation, early exit classification, and
bottleneck injection with the goal of reducing the average end-
to-end latency of AI/ML inference on constrained IoT devices.

I. INTRODUCTION

In recent years, an increasing number of tasks (from image
classification, to image segmentation, to recommendation) is
performed using Deep Neural Networks (DNNs). The success
of DNN models reflects their increasing accuracy in a large
variety of scenarios. Nevertheless, their complexity and huge
over-parameterization constitute a significant burden from the
computational viewpoint. In several IoT scenarios, the data to
process are collected in a resource-constrained device (e.g., a
picture taken from a drone) in which a complex DNN model
could not fit. Data need to be transferred over the network to
a remote, powerful server that can run large DNN models. In
this scenario, the overall inference latency depends, in addition
to the server processing time, on the data transfer time. In case
of degraded transmission channel conditions, this may lead to
an excessive end-to-end delay.

Split Computing [1] proposes to divide large DNN models
into two portions, deployed at the end device and at the remote
server respectively. In this way, part of the computational load
is carried locally, and the activation values at the split point are
transmitted to the remote server. In addition to the obfuscation
of the intermediate representation, which is not immediately
recognizable by human observers as the original input would
be, this approach unlocks compelling trade-offs between the
delay and the amount of data to transmit, provided that the
split point is chosen carefully. In fact, for many off-the-shelf
DNN architectures such as ResNet [2] and VGG, the size of
the representations at the first layers may exceed the size of the
input data. To reduce communication overhead, the network
would need to be split at a later stage, i.e., closer to the output,
thus leaving most of the computation to the mobile device [3].
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Fig. 1: The ReBEL architecture. Local IoT device runs Head1 and a classifier.
If the confidence of the early classification is not sufficiently high, the data
at the bottleneck is sent to the remote server that runs Head2 and Tail.

In order to take advantage of the Split Computing approach,
the solutions aiming at decreasing the delay fall into two
categories: early-exit and bottleneck injection. With early-
exit [4], the DNN is augmented with parallel branches which
operate on the activation values of intermediate layers to pro-
vide tentative inference results. If the confidence of the early
inference is sufficiently high, the data is not transmitted to the
server, with a reduction of the average inference time. With
bottleneck injection [1], the DNN is modified to explicitly
include a small-size layer at the beginning, whose output is
sent to the server. This has an effect on the accuracy, since
such a smaller intermediate representation may be less rich
than the original DNN.

In this paper we propose Regularized Bottleneck with Early
Labeling (ReBEL), an improved split computing architecture
that combines elements of early-exit and bottleneck injection
for dynamically offloading image classification tasks in IoT
deployments (Fig. 1). ReBEL needs to address multiple chal-
lenges in order to increase the expressivity of the bottleneck
interface: its representation should be compact enough for
efficient transmission to the remote server, informative enough
to enable high accuracy inference at the server, yet suffi-
ciently simple to be correctly processed by the early classifier
(Sec. III). We outline a method for training ResNet-family
split-execution DNNs which accommodates these somewhat
conflicting goals and is general enough to be extended to other
DNN architectures (Sec. IV). We introduce the use of Gaussian
mixtures as early classifiers (GMC), providing a boost in the
accuracy achievable after minimal local processing (Sec. V).
Our experiments (Sec. VI) show that the GMC achieves a
significant gain in accuracy in comparison to commonly used
linear layers, K−Nearest Neighbors, or K−means. In par-
ticular, experiments on the CIFAR-100 dataset indicate that
ReBEL provides considerable benefits compared to existing
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approaches and can enable a set of practically interesting trade-
offs between overall inference accuracy and end-to-end latency
with a minimal computational burden on the IoT device.

II. RELATED WORK

This section explores existing proposals for executing state-
of-the-art AI models leveraging the network while achiev-
ing acceptable end-to-end latency and inference accuracy on
resource-constrained devices.

Split Execution. Split execution aims at slicing large DNN
models into multiple sections and offloading parts of the
computation to powerful remote servers [5]. The base DNN
model can be split by layers, channels, or by parallelizing
input data. Splitting does not incur into accuracy losses since it
merely distributes the processing workload. Neurosurgeon [6]
is the first framework exploiting model splitting, partitioning
models layer-wise based on the cost of computation, and
enabling the scheduling of split models among mobile devices
and infrastructure. Similarly, Li et al. [7] partitions models into
layers using an auto-tuning mechanism based on performance.
JointDNN [8] supports collaborative model training and infer-
ence between the mobile device and the servers, describing the
operation of DNN layers as an integer linear program (ILP)
modeling battery constraints, processing load, and quality of
service parameters. JALAD [9] also formulates model splitting
as an ILP problem aiming to minimize the end-to-end latency.
IONN [10] partitions a DNN model and employs incremental
offloading to realize energy-efficient collaborative inference
between mobile devices and the edge server. Scission [11] and
Couper [12] systematically adopt layer-wise DNN partitioning
and workload scheduling. DeepThings [13] employs a fuse-
tile partitioning algorithm to reduce the incurred memory
footprint. Zhou et al. [14] propose a containerized spatial
partitioning runtime to accelerate CNN inference for IoT
applications at the edge.

In all the above works, the DNN architecture is not mod-
ified. Therefore, the transmission of the intermediate output
may require a very high amount of data — the choice
of the splitting point is limited by the architecture. In our
proposal, instead, we modify the DNN architecture to include
a bottleneck that limits the amount of data to be transmitted.

Early-exit. Early-exit is an adaptive inference method that in-
troduces one or more intermediate branch classifiers to a DNN
model in the training process. An early-exit decision can thus
short-cut the inference process, resulting in a faster outcome
and a reduced workload (no need to process the remaining
DNN layers) — such an approach was originally proposed for
large models running on servers, with no connection with the
split computing approach. The idea was first proposed in [15]
as “cascading neural networks”, where intermediate output
layers are added to an off-the-shelf DNN and trained while
keeping the weights of the DNN frozen. In the past years, the
early-exit principle has been proposed under different names:
conditional deep learning [16], shallow-deep networks [17],
adaptive inference [18], budgeted prediction technique [19],

etc. BranchyNet [4] achieves 2-6x inference speedups by
jointly optimizing the branch structures, exit criteria, and the
loss functions for all the exit points. Neshatpour et al. [20]
arrange Convolutional Neural Networks (CNNs) into multiple
stages with contextual awareness of the input workload to
achieve a desirable energy-accuracy trade-off. Dynexit [21]
employs a dynamic strategy to update the loss weight of each
exit point for ResNets [2]. RANet [22] uses an early-exit
strategy to classify images with different resolutions.

DDNNs [23] and DeepIns [24] extend early-exit to a dis-
tributed computing hierarchy (cloud, edge, and IoT devices).
Similarly, Dynamic offload [3] improves on split execution by
allowing some of the inferences to be decided in an early-exit
fashion on the local IoT device, without systematically carry-
ing forward the entire computation on the remote platform. Lo
et al. [3] split a DNN model into an on-device auxiliary DNN
and a remote principal DNN, allowing dynamic offload of the
workload based on an early assessment of the confidence in
the early prediction’s accuracy, which is based on a softmax
classification layer. Unlike [4] and [16], confidence thresholds
are defined for each class pair (or per class, when the number
of classes is large) at training time and determine the tensor
arrays that need to be sent over the network to the principal
DNN. Edgent [25], Boomerang [26], and DDI [27] combine
early-exit and model splitting to achieve the best trade-offs
between latency and accuracy, using a regression model to
predict the cross-layer inference latency due to offloading.

In the above works, the intermediate data that may be sent
(depending on the confidence of the early inference) may
still be very large, while in our case we explicitly inject a
bottleneck to avoid transmitting a large amount of data.

Bottleneck Injection. Limiting the network footprint of dis-
tributed DNN operation is a critical aspect in an IoT system,
as it can both reduce transmission latency and increase device
workload. One option is to use a set of additional layers to
compress (code and decode) the representation of a given layer
— the compression could be lossy [28], channel-agnostic [29],
or channel-aware [30]. Such an approach, nevertheless, in-
creases the computational burden for coding and decoding,
without advancing the inference computation. Another option
is bottleneck injection, which consists in building new DNN
models that contain a thin intermediate layer at the offloading
point. This enables the seamless integration of compression
within a distributed DNN inference at the cost of a decreased
accuracy. Head Network Distillation (HND) [31] introduces
bottleneck injection based on the observation that pre-trained
DNN models often have redundant parameters in the first lay-
ers. HND uses knowledge distillation [32] to build a compact
head network replacement (student) mimicking the original
model’s head (teacher) behaviors. BottleFit [33] improves on
the HND approach for training small and accurate split models
to be deployed on constrained IoT devices at the network edge.

Differently from these works, we augment the bottleneck
with an early-exit branch to provide early classification results
in the case of simple inputs.
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Fig. 2: The bottlenecked head (right) mimics the original head output (left).

III. REBEL DISTRIBUTED ARCHITECTURE

In the design of ReBEL, we start from a pre-trained DNN
model (e.g., ResNet, DenseNet), and we aim at deriving a
modular model that is better adapted for a distributed deploy-
ment involving constrained devices and a network. Our goal is
to overcome the intrinsic limitations of widespread computer
vision models, where the intermediate output of early hidden
layers is much bigger than the original data, preventing an
effective split deployment. There are two key elements that
characterize our approach: (i) we modify the early stages of the
model (Head) by injecting a bottleneck as a natural split point
between IoT device and remote server, and (ii) we exploit the
relatively small bottleneck output by means of a local classifier
that can predict labels early with a reliable confidence metric.

The components of the ReBEL architecture are shown in
Fig. 1. Inspired by HND [34], we replace the first segment of
the DNN model (the Head) with a simpler bipartite structure,
namely Head1 and Head2, which delimit a bottleneck channel
that carries the intermediate data (see Fig. 2). The Tail section
of the model is left unchanged; the sequence of Head1 and
Head2 is trained to mimic the behavior of the original Head
so that the Tail keeps operating normally (in Fig. 2, v and v′

should be as similar as possible). We process the Head1 output,
called z, in two steps. First, we use it on the local device via
an early classifier. In case of low classification confidence,
we transmit z to a more powerful machine such as an Edge
server, where the remainder of the deep model computation
(i.e., Head2 and Tail) can take place.

A. Variational Head

In earlier architectures based on bottleneck injection [34],
the output z of the bottleneck layer is used as it is. Instead,
we consider a different approach, which we call Variational
Head, inspired by Variational Autoencoders [35] — although
the architecture we employ (Fig. 3) is based on convolutional
layers that do not behave as ordinary autoencoders. In the
following, we explicitly refer to the ResNet50 architecture;
however, this methodology is general enough to be applied to
any computer vision model.

We design a head network that serves images of size
3×32×32 (i.e., the size of images in the CIFAR-100 dataset).
Our variational head replaces the first seven residual blocks
of ResNet50, i.e., a total of 24 convolutional layers, and is
composed of a Head1 and a Head2, each with 4 convolutional
layers (Fig. 3). We normalize the output of each convolu-
tional layer by mean of Generalized Divisive Normalization
(GDN) [36], a parametric nonlinear transformation that was
shown to be well suited for “Gaussianizing” data from natural
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Fig. 3: Architecture of ReBEL variational head. Head1 outputs two vectors
µ and σ that are used to sample an embedding z ∼ N(µ(x), σ(x)). Head2
further extracts features from z and produces an input for the Tail.

images. Significantly, Head1 does not directly convert an im-
age x ∈ X into an embedding vector z ∈ Z. Instead it maps x
into a distribution in the space Z. In practice, when processing
x, Head1 outputs two vectors: a mean vector µ(x) ∈ Z and a
covariance vector σ(x) ∈ Z. Such vectors model a multivariate
normal distribution N(µ(x), σ(x)).1 This distribution is called
posterior distribution p(z|x), and it is used to sample, given
the input vector x, an embedding z ∼ N(µ(x), σ(x)) for the
input vector x, which can then be sent to the local classifier
and/or to Head2. Although embeddings in the latent space
Z are obtained through a shallow feature extraction process
(Head1 contains only four convolutional layers), we show that
they can still be used to provide approximate predictions for a
significant portion of the dataset. In Sec. IV, we show how
this architecture enables a particular regularization process
that leads to producing high-quality embeddings as output of
Head1.

Note that Head2 does not feature deconvolutional layers:
differently from an autoencoder, our goal is not to reconstruct
the input after compression but to proceed in the feature
extraction process. Therefore, the bottleneck output is further
processed by a convolutional block and then sent to the Tail.

B. Inference Workflow

In summary, the inference workflow proceeds as follows.
On the device, a sample x ∈ X is forwarded to Head1,
which outputs vectors µ(x) and σ(x). These are used to
sample an embedding vector z ∼ N(µ(x), σ(x)) in the latent
space Z. Such embedding is then fed to the local classifier,
which produces (i) a local prediction, i.e., assigns a label
c′ ∈ {1, . . . , C} to the embedding z (and therefore to sample
x), and (ii) a confidence value γ ∈ [0, 1], that is a metric
of how confident the local classifier is to assign label c′ to
sample x. If the confidence γ is higher than a predefined
threshold, the prediction is considered reliable enough and the
inference process terminates. Otherwise, the embedding z is
sent to the remote server and fed to Head2 and Tail, thus
obtaining a new and more accurate label c′′ ∈ {1, . . . , C}.

IV. MODEL TRAINING

ReBEL model training jointly optimizes 3 loss functions:

1Note that the covariance is supposed to be a square matrix. To reduce the
number of parameters, we limit our variational output to distributions with
diagonal covariance matrices, where vector σ(x) ∈ Z represents the diagonal.
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1. a Mimic Loss, which steers the Head to approximate the
behavior of the original model (as featured in HND);

2. a Regularization Loss, which incentives Head1 to generate
good quality embeddings for classification;

3. an Early Classification Loss, which helps enhance the early
classifier’s success rate on the latent space.

In this section we first detail each of the loss functions,
providing both the formulation and an intuition underpinning
its design. Then we describe the process to optimize such
functions jointly and train our distributed model.

A. Mimic Loss

The original DNN model can be seen as the composition
of two functions: H : X → V , i.e., the Head that maps input
x ∈ X to an intermediate vector v ∈ V (see Fig. 2, left part),
and T : V → Y , i.e., the Tail model that maps the intermediate
vector v to the prediction c ∈ {1, . . . , C}. By applying HND,
we replace H with H1 ◦ H2 : X → V , i.e., the composition
of the two functions H1 : X → Z and H2 : Z → V . Fig. 2
shows that the sequence of the two models maps input x to a
different intermediate vector v′ ∈ V . The objective of ReBEL
is to train H1 and H2 so that the distance between v and
v′ is minimized for every input x. This can be achieved by
minimizing the Sum of Squared Error between outputs of the
two models:

LM =
∑

x∈X∥H2(H1(x))−H(x)∥2. (1)

Note that this is similar to the reconstruction loss in au-
toencoders. However, rather than reconstructing the original
input x, we herein try to produce an output similar to v, thus
‘mimicking’ the behavior of the original head.

B. Regularization Loss

Besides reproducing the results of the original Head, we
need to render the bottleneck between H1 and H2 suitable for
early classification, that is, making it so that points with the
same label are found nearby in the latent space Z. As shown in
[37], this is difficult to achieve at the early layers of a model
(as shown in Fig. 3, our head features only 4 convolutional
layers before the bottleneck). The classification task gets
progressively easier the more high-level features have been
extracted from the input image, which is indeed the reason
why deep models manage to achieve impressive accuracy.
Conscious of this challenge, in ReBEL we seek a regular
structure for the latent space that successfully represents at
least a portion of the data. The intuition behind this is that
the full DNN model depth is only beneficial for the hardest
samples in the datasets, while in many cases a shorter feature
extraction process would be enough (see Fig. 4).

Our regularization approach takes inspiration from varia-
tional inference, a technique that approximates complex dis-
tributions by choosing a parameterized family of simpler ones
and selecting the one that minimizes a given error measure-
ment. In ReBEL, we approximate the posterior distribution
p(z|x) (i.e., the output of Head1) with a prior p(z) that is a
mixture of Gaussians:

Fig. 4: Two images of a horse. The left one is easy to label even with a small
model, whereas the right one requires a deeper network architecture [38].

p(z) =
∑C

c=1

∑K
k=1 πckN (z;µck,Σck), (2)

where C is the number of labels (e.g., 100 in CIFAR-
100 dataset) and K is the number of Gaussian components
we assume for each label. πck, µck, and Σck are trainable
parameters. In practice, these parameters are sampled from
those of the early classifier (see Sec. VI).

We express the approximation error between the two dis-
tributions p(z|x) and p(z) with the Kullback–Leibler di-
vergence [39]. Note that, by construction of the variational
head, also p(z|x) is a Gaussian distribution, mean µ(x) and
covariance σ(x) that are functions of the input x. The KL–
divergence between two Gaussian distributions can be directly
expressed in terms of their means and covariance matrices.
Hence we define the regularization loss as

LR = KL(p(z|x), p(z))
= KL(N (µ(x), σ(x)),

∑
c,k πckN (z;µck,Σck))

=
∑

x∈X

∑
c,k

1
2 mink

[
log |Σck|

|σ(x)| − dim(Z)

+ (µ(x)− µck)
TΣ−1

ck (µ(x)− µck)

+ tr{Σ−1
ck σ(x)}

]
· 1{c=l(x)},

(3)

where tr{·} is the trace operator, l(x) is the correct label for
sample x and, for brevity, we use vector σ(x) to denote the
diagonal covariance matrix diag(σ(x)).

C. Early Classification Loss

The ReBEL local classifier should learn to properly label
embedding vectors from the latent space. We seek a metric
that better rewards the classifier the more it is confident about
correct predictions. Indeed, given our inference workflow, it is
important to discern among predictions based on a confidence
value: easy instances that are classified correctly in the local
classifier should feature a high level of confidence, while a
low confidence value should be assigned to predictions whose
correctness is uncertain. This is crucial to decide between
accepting the local prediction and paying the price to solicit
the intervention of the remote model.

For this, we use a negative log-likelihood classification loss

LC = −
∑

x∈X

∑C
c=1 1{c=l(x)} log γc(z), (4)

where γc(z) is the prediction confidence, i.e., the early clas-
sifier assigns label c to the embedding z ∼ N(µ(x), σ(x))
with probability p(c|z) = γc(z). Using such loss, the value
maxc(γc(z)) provides a good indicator of how confident the
local classifier is about its prediction for embedding z.
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D. Training Workflow

We minimize a weighted combination L of the three losses

L = αLM + βLR + γLC , (5)

where α, β, and γ are weights that we determine empirically
(see Section VI). In order to minimize (5), we propose a
training workflow where the two heads Head1 and Head2 are
trained jointly together with the early classifier.

Since the very beginning of the process, the embeddings
obtained through Head1 from the training set are forwarded
both to the Head2 and to the early classifier. Based on the two
outputs, we compute the loss (5) and all the three pieces of the
model are updated jointly with SGD using backpropagation.
Intuitively, this will affect the learning of the latent space in
a way that takes into account the correctness of the local
classifications, optimizing a trade-off between the goals of
Head2 and of the local classifier. Note that this joint training is
the only way to properly express the regularization loss, as the
parameters of the prior p(z) depend from the early classifier.

Note that, not contributing to L, the Tail is not affected
by this training process. Indeed, by minimizing the mimic
loss LM , Head1 and Head2 mimic the output of the original
head, and for LM = 0 the Tail achieves the same accuracy
as the original model. In general, the Tail weights may be
preserved accounting for a small reduction in accuracy (as
done in [34]). However, it is possible to further improve the
accuracy of the remote model by fine-tuning Head2 and Tail
after the process above is complete. We do this by freezing
Head2 and minimizing the Cross Entropy between the Tail
output and target labels in the training set.

V. GAUSSIAN MIXTURE CLASSIFIER

The embeddings that we aim to classify locally are obtained
early on in the feature extraction process. Accordingly, we
do not expect a perfect structure of the latent space even af-
ter regularization; hence, traditional classification approaches
(e.g., logistic) may fail to operate on such kind of data. Con-
sistently with our Gaussian mixture assumption for the prior
distribution, we propose an expressive classification model that
estimates the probability of each label c ∈ {1, . . . , C} based
on a mixture of K normal distributions (Gaussian Mixture
Classifier — GMC). We assign probabilities to each label
through a weighted sum among all the components

γc =

∑
k πckN(z;µck,Σck)∑

c′
∑

k′ πc′k′N(z;µc′k′ ,Σc′k′)
. (6)

In practice, this is equivalent to directly learning the
prior (2) that best fits the data. Our GMC architecture is
inspired by [40]. We learn a group of parameters for each
component c, k: (i) π(p)

ck ∈ R, that is the weight of component
c, k in the mixture, (ii) µ

(p)
ck ∈ Z, the mean vector of

component c, k, and (iii) L
(p)
ck ∈ Rd×d, the Cholesky decom-

position [41] of the covariance matrix (where d=dim(Z)).
Differently from [40], we do not limit our model to diagonal
covariance matrices. However, as the covariance matrix is
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Fig. 5: Our GMC operates in log domain. First, valid π, µ and Σ are
sampled from the trainable parameters. At inference time, we compute the
log probabilities yc for each class c, weighting the K components. The last
block outputs the log probabilities weighted with respect to the other classes.

symmetric, we limit the number of parameters to d(d+ 1)/2,
i.e., L(p)

ck is a lower-triangular matrix.
A Gaussian mixture has some constraints on its parameters.

Hence, we use the trainable parameters π
(p)
ck , µ(p)

ck , and L
(p)
ck

(marked with the apex ·(p)) to sample the actual parameters
of the Gaussian mixture as follows:
1. weights πck — we ensure positivity and sum-to-one prop-

erty by sampling πck = eπ
(p)
ck /

∑
c′,k′ e

π
(p)

c′k′ ;
2. covariance matrix Σck — we sample symmetric positive-

definite matrices Σck = L(p)TL(p) + I;
3. mean µck — there are no requirements for the mean

vectors, hence µck = µ
(p)
ck .

The architecture of ReBEL’s GMC is illustrated in Fig. 5.
Using this early classifier, the regularization loss in (3) is ob-
tained easily, as we can compute the KL–divergence between
the distribution learned by the GMC (prior) and the output of
Head1 (posterior).

VI. EXPERIMENTAL RESULTS

We evaluate ReBEL on ResNet50 with the CIFAR-100
dataset. Additionally, we also evaluate performance in un-
balanced scenarios where different clients have local datasets
drawn from different distributions. For local predictions, we
use the proposed Gaussian Mixture Classifier (GMC) and com-
pare it against other early classification approaches adopted
by [3], [16], [37]. To evaluate the impact of the latent space
regularization of ReBEL, we train the models both with and
without the regularization loss from Eq. (3). In our experi-
ments, we investigate the inference accuracy of the fraction
of queries that are decided by the local classifier (i.e., those
with sufficient prediction confidence). Last, we quantify the
practical advantages of ReBEL over full remote computing
offload and vanilla HND [34].

A. Experiment Setup

Model architecture. The reference model architecture for
our experiments is ResNet50, a deep neural network with 53
conv. layers, where the first two groups of residual blocks
(i.e., 24 conv. layers) are replaced by our variational head
(4 conv. layers on Head1, deployed device-side, and 4 conv.
layers on Head2, deployed server-side), with bottleneck size
dim(V ) = 867. With such a bottleneck, the embeddings’
serialized footprint is 0.28 times the size of the original
images. The rest of the architecture is left unchanged (Tail with
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29 conv. layers, deployed server-side). We test our approach
on the CIFAR-100 dataset, which features 60K image samples
(50K for the training set, 10K for the validation set) of size
3× 32× 32. We train a baseline bottleneck-injected model on
CIFAR-100 using HND [34], reaching an accuracy of 76.4%.
Compute and network. We characterize two distinct execu-
tion nodes for the IoT device and for the server. Server-side,
we run our experiments on an AWS EC2 instance equipped
with a Tesla T4 GPU, where we deploy Head2 and Tail. To
represent the device, we run the Head1 and the local classifier
on a CPU (4 core Intel Xeon 8259CL), which is about 55
times slower than the GPU (a similar performance proportion
as in [34]). We model the network between the IoT device and
the server as an ideal link with 10 ms of propagation delay
and evaluate a range of bandwidth settings from 1 to 10 Mbps.
Local classifiers. We implemented the Gaussian Mixture
Classifier (GMC) proposed in Section V as a PyTorch module
that can be trained with SGD and back-propagation. In our
tests, we use K=8 components per class and add a random-
projection module that reduces the dimensionality of the latent
space from 867 to 434 using the algorithm from Achliop-
tas [42].2 We evaluate also a more lightweight version of
the GMC that only uses diagonal matrices. We compare the
performance of GMC with three other approaches commonly
used in literature for early classification:
1. K–NN — Assigns labels based on the K closest items in the

latent space. As it requires querying the whole training set
at inference time, it is computationally cumbersome. We
use the FAISS3 optimized implementation and empirically
choose K=100. We use a confidence metric similar to [37].

2. K–means — Embeddings are divided into K clusters and,
at inference time, labels are assigned based on the closest
centroid (the label that was predominant in that cluster
is assigned). As in [37], the confidence is measured as
the share of the predominant label in each cluster. We set
K=800, i.e., on average, 8 clusters per class.

3. Linear w/ Softmax — A linear transformation followed by
Softmax activation, this classifier is typically used at the
end of a DNN and is adopted in [16] for early classification.

We empirically set the loss function coefficients in (5), as α=1,
β=0.001, and γ=0.1. Note that, when we use K–NN and K–
means as local classifiers, we can not compute the regular-
ization loss from Eq. (3). Therefore, we only evaluate these
models without regularization. Also, note that the “Linear w/
Softmax” model is equivalent to a unimodal Gaussian mixture
where all components share the same covariance matrix.
Hence, we can compute the regularization loss sampling a
prior through the relations described in [43, Appendix A].

Table I lists the relevant statistics for all the classifiers; as a
reference, we also show the statistics for the original ResNet50

2Note that this makes our GMC operate on a lower-dimensional space
compared to Z, significantly reducing the number of parameters, but also
introducing a mismatch between the dimensions of prior and posterior.
Hence, to compute the KL–divergence we first apply the same dimensionality
reduction to the posterior, then evaluate Eq. (3) in the lower-dimensional space.

3Facebook AI Similarity Search (https://ai.facebook.com/tools/faiss/)

TABLE I: Statistics of the models employed in our experiments. Floating
point operations (FLOPs) were measured with the PAPI tool [44].

Model FLOPs # Parameters Memory

ResNet50 196 M 25.6 M 67.7 MB

Head1 4.72 M 32.0 K 125 KB
Head2 + Tail 153 M 22.8 M 87.0 MB

Faiss K–NN 142 M - 168 MB
Faiss K–means 2.25 M - 2.96 MB
Linear 13.2 K 86.8 K 339 KB
GMC 19.6 M 75.9 M 291 MB
GMC (diag) 498 K 695 K 4.09 MB

model and for the bottleneck-injected model, distinguishing
between the device side (Head1) and the server-side (Head2

+ Tail). We remark that the K-NN algorithm, despite the
Faiss optimizations, has computational requirements of the
same order as the original model, hence it is not practically
suitable for early classification. However, the GMC classifier
outperforms K-NN, even in its diagonal version.

B. Accuracy of local predictions

We first train the four early classification models omitting
the regularization loss. Each model learns its own confidence
metric in [0, 1] that we use to decide whether we should accept
the local predictions (easy queries, with confidence above a
certain threshold) or further processing is needed (hard queries
with low confidence). As shown in Fig. 6a, by setting higher
threshold values, all the classifiers provide increased accuracy.
This suggests that all of them successfully learn a meaningful
confidence metric, i.e., higher-confidence predictions are more
often correct than lower-confidence ones. Fig. 6b depicts the
relationship between the chosen threshold and the fraction of
queries covered by the local classifier (i.e., their prediction
confidence is above the threshold). Note that as each classifier
learns a different confidence metric, they feature different
relationships between confidence threshold and coverage. For
this reason, the threshold should be set differently for each
model to cover the same fraction of queries locally. Since
this prevents us from comparing the different approaches
simply relying on the confidence threshold, in the following
we will compare models relying instead on the fraction of
queries covered by the early predictions. This allows us to
clearly understand the performance of each model based on
the fraction of queries it serves locally.

Fig. 7a compares local classifier accuracy based on the
fraction of queries covered locally. Dashed lines show the
impact of regularization on linear and GMC models4. Results
show that our regularization process noticeably improves the
performance of both classifiers: under an equal fraction of
covered queries, GMC increases its accuracy by up to 14%.

4Regularization also affects the accuracy of the remote model: we reached
75.2% when training with the linear classifier and 76.7% with the GMC.
Remarkably, the latter is slightly higher than the base model accuracy (76.4%).
This suggests bottleneck regularization might also increase remote classifier
accuracy instead of simply trading it off for improved local predictions.
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(a) Local accuracy. (b) Fraction of queries served locally.

Fig. 6: Confidence threshold impact on (a) local accuracy and (b) fraction
of local predictions by early classifiers trained without regularization. Each
classifier achieves a different confidence distribution for its local predictions.

(a) Local accuracy. (b) Overall accuracy of ReBEL with GMC.

Fig. 7: (a) Accuracy of local classifiers vs. fraction of early predictions.
Dashed lines show improvements introduced by regularization. (b) Local,
Remote, and Overall accuracy of ReBEL using regularized GMC.

In general, the proposed GMC, even in its lightweight diag-
onal version, outperforms all other approaches, including K-
NN, which is impractical due to its high complexity. When
the fraction of queries covered locally is small (i.e., higher
confidence thresholds are set), some local classifiers are able
to provide levels of accuracy even higher than the remote
classifier (i.e., 76.4%). In particular, GMC matches the remote
model’s accuracy when serving ≈10% of queries locally.

Fig. 7b outlines the accuracy of the local model (GMC
with regularization) and of the remote model. We observe
that, when most of the queries are served locally, the remote
model only receives the hardest portion of the queries, thus
it slightly reduces its accuracy. However, this trend is not
marked for lower coverage values (below 0.4), where the
remote classifier preserves its accuracy, suggesting that the
local classifier specializes on a different subset of queries.
The graph also shows the accuracy of the overall distributed
model, i.e., accounting for both local and remote predictions.
The results show that it is possible to cover 20% of the queries
locally by accounting for less than a 5% drop in accuracy with
respect to the remote classifier. When serving less than 10%
of the queries locally, the remote accuracy is even slightly
improved by local predictions.

Last, we evaluate the efficiency of our approach in terms of
computational requirements. To this aim, we compare it with
the approach recently proposed by Kumar et al. [37], where the
output of intermediate layers of ResNet50 is directly exploited
for early classification with K–means: the higher the number
of used layers, the higher the fraction of queries that can be
served locally. Table II compares the number of floating-point
operations (FLOPs) needed to process different percentages

(a) Accuracy of GMC. (b) Overall accuracy of ReBEL with GMC.

Fig. 8: Accuracy of (a) GMC and (b) overall ReBEL approach on unbalanced
datasets. Datasets are sampled from CIFAR-100 with a Dirichlet distribution:
lower values of alpha lead to unbalanced datasets with high number of samples
from few classes. The legend states the Gini index for each alpha.

(a) Accuracy of K-NN. (b) Accuracy of Diagonal GMC.

Fig. 9: Accuracy of (a) local K-NN classifier and (b) local diagonal GMC on
unbalanced datasets. Datasets are sampled as in Fig. 8.

of queries locally while preserving a certain fraction of the
remote accuracy. In [37], authors provide the results when
providing an overall accuracy that is 88.86% of the full one.
To have a fair comparison, we do the same with respect to
our remote model. For ReBEL, we report the results of GMC
(both full and diagonal), also including the FLOPs required
by Head1. Results show that, to cover the same percentage of
queries, our approach requires up to 14x less computation.

C. Accuracy on Unbalanced Datasets

The results above consider a scenario where both local
and remote classifiers are trained over the same dataset. In
a realistic IoT scenario, each local classifier may operate
in different geographical areas, with access to different data
subsets. In order to benefit from all the available information,
the remote model would be trained through federated learning
[45], while the training of local classifiers would take account
only of local data. We show that this unbalanced situation can
bring significant benefits in terms of accuracy of locally served
queries, as our local classifiers can specialize on the particular
data distribution in its geographical area.

To simulate this unbalanced scenario, we use a common
approach in literature that generates random partitions of the
main dataset sampling from a Dirichlet distribution [45]. The
distribution assigns different probabilities to different groups
of classes and features a parameter α: the more this parameter
is close to zero, the more unbalanced the probabilities of
sampling from different classes; the higher alpha, the more
the distribution will be uniform among classes.

We choose some representative values of α and train our
GMC model on the resulting datasets. Fig. 8a shows the
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TABLE II: On-device FLOPs of ReBEL and Kumar [37] for different fractions
of early predictions while delivering 88.86% of the original accuracy. ReBEL-
GMC diag. and full serve respectively 22% and 26% of queries locally.

Served locally [%] 5% 22% 26%

Kumar et al. [37] 30 M (FLOPs) 74 M 92 M
ReBEL-GMC (diag|full) — 5.2 M 24 M

accuracy of the local predictions varying the fraction of queries
covered locally. For every value of α, we provide the Gini
index as an indicator of how unbalanced each dataset is in
terms of samples per class. The figure shows that when the
dataset is highly unbalanced, the local classifier performs
remarkably well: for α=0.01 (Gini is 0.96, most samples
belong to 5 classes only), we can obtain better accuracy
than the remote model while serving more than half of the
queries locally. As expected, by increasing α, the datasets
become more balanced and this advantage disappears, hence
results match those in Fig. 7. As we observe from Fig. 8b,
for unbalanced datasets the usage of a local classifier may
even improve the overall accuracy compared to serving all
the queries remotely. In particular, for α=0.01, when 46% of
queries are served locally, the overall accuracy gains additional
1.8% points compared with only using the remote classifier.
This remarkable result suggests that, aside from reducing the
inference time and the network load (results that we discuss
in the remainder of this section), in many IoT use cases our
approach may bring advantages also in overall accuracy, as
the local model can specialize on local data.

Last, Fig. 9 compares, varying alpha, the performance of K–
NN (that is the competitor with the highest accuracy) and our
GMC model in its lightweight diagonal version. Results show
that GMC outperforms K–NN even in its diagonal version,
providing almost the same accuracy values as its full version,
despite requiring much less computational power.

D. Inference Time and Network Load

In this set of experiments, we evaluate the benefits of our
bottleneck-classification approach in terms of inference time
reduction. Overall, we reduce the average inference time due to
two factors: (i) the presence of a bottleneck between the device
and the remote server, i.e., smaller embeddings are sent to the
server compared with the original images (same as HND [34]),
thus requiring less transmission time; (ii) a fraction of the
queries is served locally, hence even fewer data should be sent
to the server compared to HND. For this set of experiments, we
used the Gaussian Mixture classifier with diagonal covariance
matrixes and we measure the delay for batches of 64 queries.

Fig. 10a shows the average end-to-end delay for different
network conditions (available per-device bandwidth), varying
the coverage of early predictions. Of course, the overall
delay decreases the more queries are served locally. Three
factors contribute to the total delay: (i) processing time on
the device for feature extraction by Head1 and early classi-
fication (device time); (ii) transmission time of intermediate
embeddings toward the server, plus RTT propagation delay
(network time); (iii) processing time on the server. We neglect

(a) Total inference delay of ReBEL.
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(b) Server, network, and local delay.

Fig. 10: Overall prediction delay on batches of 64 samples for different
network conditions. On the left, total delay of ReBEL varying the fraction of
local predictions. On the right, decomposed delay (network, local, and remote
computation) comparing different approaches (For ReBEL, we use diagonal
GMC and show results for two different fractions of local predictions).

the extra transmission time for sending back the prediction
results to the device, as their size is a handful of bytes.
We select two different coverage values (0.23 and 0.49) and
analyze more in detail the three delay components (Fig. 10b).
The figure compares ReBEL both with traditional remote-
only computation (using the original ResNet50 model and
sending the full images towards the network) and vanilla Head
Network Distillation (as in [34]). We see that our approach
introduces a significant delay reduction when the available
bandwidth is in the order of units of Mbps, which is a common
scenario in IoT networks. When the device has access to larger
bandwidth values the network time becomes comparable to the
local computation time and the advantage introduced by our
approach becomes smaller.

Finally, to provide an example of the practical gains of
ReBEL in a realistic use case, we shall consider an IoT
network with 100 devices, each generating 25 frames per
second that need to be classified. The overall network footprint
of the raw image transmission in a full remote offload scenario
would be 61.44 Mbps. Bottleneck injection via HND [34]
would reduce network load to 17.34 Mbps. Introducing early
labeling at the bottleneck would bring the required throughput
to 13.35 and 8.84 Mbps, for coverage values 0.23 and 0.49,
respectively. The benefits of ReBEL in terms of network load
are thus practically significant.

VII. CONCLUSIONS

This paper proposes ReBEL, a novel dynamic offload ap-
proach to split a DNN model computation between a local
resource-constrained device and a remote server. Inspired by
the work on Head Network Distillation (HND), we inject a
bottleneck at the initial stages of a target pre-trained DNN
model and enhance it with early exit capabilities. A key
element of ReBEL is the design of an efficient bottleneck
embedding based on the inclusion of two new terms into
the training loss function: a regularization loss, based on
variational inference modeling, and an early classification loss,
with the goal of shaping the bottleneck contents for successful
local classification.

We evaluated the behavior of a minimal on-device head
network (4.72 MFLOPs, 32K parameters, 125 KB of mem-
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ory) for local and overall inference accuracy on a CIFAR-
100 image classification task. Our results demonstrate that a
local classifier based on Gaussian Mixtures far outperforms
other common early exit classifiers, such as linear, K–NN,
or K–means, when used on a regularized early bottleneck
output after a minimal amount of on-device processing. In
our experiments, we also assess the advantages of special-
ized training for achieving higher accuracy on non-uniform
input class distributions and highlight the expected gains in
inference time and reduced network load. We believe ReBEL
contributes an advanced split computing architecture that can
efficiently bestow full-fledged AI capabilities onto constrained
IoT devices with network access.
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