
Impact Evaluation of Control Signalling onto
Distributed Learning-based Packet Routing

Redha A. Alliche?, Tiago Da Silva Barros?, Ramon Aparicio-Pardo?, Lucile Sassatelli†
? Université Côte d’Azur, CNRS, Inria, I3S, France

† Université Côte d’Azur, CNRS, I3S, Institut Universitaire de France, France
Contact: alliche@i3s.unice.fr

Abstract—In recent years, several works have studied Multi-
Agent Deep Reinforcement Learning for the Distributed Packet
Routing problem, with promising results in various scenarios
where network status changes dynamically, is uncertain, or is
partially hidden (e.g., wireless ad hoc networks or wired multi-
domain networks). Unfortunately, these previous works focus
on an ideal scenario where the impact of control signalling
is neglected, and network simulation is tailored to simplistic
assumptions. In this article, we present the first experimental
investigation of control signalling mechanisms for distributed
learning-based packet routing. We rely on PRISMA, our open-
source simulation ns-3-based module. We formulate two sig-
nalling mechanisms between agents (value sharing and model
sharing). We investigate the net gains considering in-band sig-
nalling and show that routing policies close to those provided by
an oracle with full knowledge of traffic and network topology
can be discovered with a control overhead of 150 % with respect
to injected data packets, if neighboring agents share their Deep
Neural Network models. We discuss the generality of our results
to underline the importance of assessing net gains of Multi-Agent
Deep Reinforcement Learning (MA-DRL)-based routing.

Index Terms—Multi-Agent Learning, Deep Reinforcement
Learning, packet routing, control signalling

I. INTRODUCTION

After the breakthrough results obtained by Deep Reinforce-
ment Learning (DRL) [1] in solving highly complex tasks [2],
DRL has been also started to be applied to communication
networks problems. One of them is the Distributed Packet
Routing (DPR) [3]–[6]. This is a challenging problem where
no complete and centralized view of network topology and
traffic demands is available (e.g., multi-hop wireless net-
works [7] or multi-domain optical networks [8]). In the DPR
problem, per-packet forwarding decisions are made locally by
distributed agents, exploiting local information, such as packet
headers and neighboring node states. Nevertheless, these first
works [3]–[6] focused on improving the learning performance
by modifying the training mechanisms and the model design,
neglecting the impact of control signalling on routing perfor-
mance. Indeed, the distributed multi-agent setting of the DPR
problem imposes a non-negligible level of communication
between the neighboring agents during the training phase,
which is meant to run continuously or frequently to adapt

The author acknowledges the support of the French Agence Nationale de
la Recherche (ANR), under grant ANR-19-CE-25-0001-01 (ARTIC project).
This work was performed using HPC resources from GENCI-IDRIS (Grant
2021-AD011012577).

the routing policy to any network change (traffic, topology).
This information exchange constitutes the control signalling,
and it introduces a certain level of overhead. Thus, a trade-
off appears between this overhead and the quality of the
learned routing: a minimal amount of signalling (overhead)
is required to make the agents learn a routing policy at a cost
of increased bandwidth requirements. On the other hand, an
excessive control overhead could slow down data packets and
impede the learning process.

This paper hence focuses on the impact evaluation of this
control signalling. To perform the above-mentioned impact
evaluation, a realistic modelling of the communication is
necessary, in contrast to the simplified simulations performed
with ad hoc network simulators in the previous works. For this
reason, we make use of our PRISMA tool, detailed in Section
III-F. This is a discrete time packet-level simulator designed
to apply MA-DRL to the DPR problem. It is based on the
ns-3 [9] network simulator and a multi-threaded implemen-
tation of each agent, enabling a more realistic network sim-
ulation where the control signalling can be implemented in a
reproducible manner. In the MA-DRL framework, neighboring
agents collaborate by exchanging information, particularly the
estimated packet end-to-end delay. In this work, we consider
that this information can be shared as the current value of
the estimate (value sharing), or as the estimating model itself
(model sharing).

Our contributions are:
• We present, to the best of our knowledge, the first ex-
perimental investigation of control signalling mechanisms
for distributed learning-based packet routing. We rely on
PRISMA, our open simulation ns-3-based module enabling
testing MA-DRL-based routing in a reproducible and realistic
manner [10].
• We formulate two signalling mechanisms for the DQN
routing [3] framework, where routing nodes periodically com-
municate copies (target) of their Machine Learning (ML)
models to their neighbors (named model sharing), or only
communicate delay estimates (named value sharing). The con-
trol overhead induced by these exchanges can be modulated
by tuning the period between two consecutive exchanges.
• We investigate net gains considering in-band signalling and
show that (i) model sharing between agents is necessary to find
routing policies close to the optimal routing of an Oracle with
perfect knowledge of topology and traffic, but at the cost of

2022 34th International Teletraffic Congress (ITC 34)

70

possibly significant control overhead (150 % of extra traffic in
the considered network settings with respect to useful traffic);
and (ii) value sharing incurs in much more reduced overhead
(10 %), but barely improves a Shortest Path (SP) routing
policy. We discuss the generality of our results to underline the
importance of assessing net gains of MA-DRL-based routing.

Related works are presented in Section II, the MA-DRL
framework and the control signalling mechanisms are de-
scribed in Section III. Simulation results are analyzed in Sec-
tion IV. Section V provides some discussion and Section VI
concludes the article.

II. RELATED WORKS

In recent years, works addressing the DPR problem by
making use of DRL have been published in [3]–[6], [11]. The
seminal paper [11] was the first to apply a Reinforcement
Learning (RL) method, the Q-learning [12], to DPR, giving
rise to the Q-routing paradigm. In this work, the routing
decisions are taken based on the packet destination. The study
in [3] applies the Deep Q-Network (DQN) framework to
this Q-routing by using a Deep Neural Network (DNN) to
approximate the Q-value function, yielding its deep learning
version: the DQN routing.

After DQN routing, other proposals of MA-DRL applied
to DPR were published in [4]–[6]. These works concentrate
on how to improve the quality of the learned routing from a
ML perspective (i.e., changing the model, the input features
or the RL algorithm), neglecting networking aspects, as the
signalling. DQRC (DQR with Communication) [4] adds the
action history, the future destinations, and the most loaded
neighboring node to the packet destination as input. The neural
network architecture of DQRC also considers a LSTM layer
to exploit the new time series features (action history and
future destinations). Authors in [5] enlarge the input algorithm
with relational features, such as the node buffers’ occupancy,
the distance from the routing device to the packet destination
or the packet TTL field. The values of these features can
vary for individual packets and devices, but the features’ list
(and its size) is the same for all the routing nodes, which
helps to improve the generalization among the nodes (the
same neural network model is used for all the nodes). Finally,
the work in [6] adapts the Proximal Policy Optimization
(PPO) [13] RL algorithm to the multi-agent scheme of the
DPR problem, yielding the Multi-Agent Proximal Policy Op-
timization (MAPPO) algorithm. In MAPPO, the task to learn is
considered as to find a routing for a given traffic matrix, using
as input the packet destination and the buffers’ occupancy.
Finally, this work also aims to generalize the routing policies
to different traffic matrices (i.e., tasks) by extending MAPPO
to the meta-learning framework.

In all the above-mentioned works, the impact of the network
control signalling onto the training process is ignored or
superficially considered. In the more recent works [5], [6],
the training is centralized in a node that gathers all the
past experiences (forwarding decisions) of all the forwarded
packets at all the routers. The model for each routing node is

learned at this central node using this large training set, and
is eventually pushed to the routing agents that will forward
the packets. The significant overhead associated to these data
transfers is not analyzed, questioning the actual gains of the
proposed methods. On the contrary, the first works [3], [4]
assumed a distributed training operation where training data
are exchanged only locally between neighboring agents at a
cost of the non-stationarity of multi-agent environments [14],
which makes harder the agents’ policies convergence. To
tackle this problem, the authors in [15] propose that the
neighboring agents share their policies (models) to stabilize
the learning when larger datasets of past experiences are used
(i.e., replay memories). However, current DQN routing such as
[3] operates by sharing the values of model estimates (value
sharing), instead of sharing the model at every neighboring
node (model sharing). Value sharing reduces the signalling
overhead, but yields poor results when replay memories are
used (known to stabilize the training of DQN [2]). On the
contrary, DQRC [4] share the neighbors’ routing models
(model sharing), but at each training step, which introduces a
significant communication overhead not properly evaluated.
In the present work, we share copies of the neighboring
models (i.e., policies) combined with replay memories, which
improves policy convergence [2]. The overhead entailed by
sharing the models between neighbors can be modulated with
the sharing update period. In this article, we investigate the
performance tradeoff entailed by tuning this update period in
MA-DRL.

III. RL FOR DISTRIBUTED PACKET ROUTING:
FORMULATION AND SIGNALLING

In this section, we first describe the network model and
formulate the DPR problem. We then express the consid-
ered Multi-Agent Reinforcement Learning (MA-RL) approach
problem based on [14]. We detail the required control sig-
nalling, proposing two different versions and showing how
signalling overhead can be traded with routing performance.
We finally introduce our reproducible framework for a realistic
evaluation of the impact of signalling in MA-RL.

A. Network Model

Let G(N , E) be a directed network graph, where N is the
nodes set and E is the unidirectional links set. A link (a, b) ∈ E
initiates at node a, terminates at node b and has a capacity of
C traffic units (i.e., Mbps or packets/sec). The incoming
and outgoing neighbor nodes of the node n ∈ N are denoted
as N in

n and N out
n , respectively. Each packet is originated

from a source node s ∈ N and targeted to a destination
node d ∈ N . The traffic matrix HHH = {hsd, (s, d) ∈ N ×N}
counts up the average volumes hsd in traffic units (i.e., Mbps
or packets/sec) of packet flows between the node pairs
(s, d) ∈ N ×N . Each node n ∈ N is a router equipped with
|N out

n | outgoing network interfaces. Each interface i ∈ |N out
n |

has its own buffer queue of size B. The queue follows a
FIFO (First-In First-Out) policy. Hence, if a packet arrives
at a full buffer, it is rejected (i.e., lost). Otherwise, the packet

71

Name Description

xsdab ∈ [0, 1] Fraction of the packet flow between the node
pair (s, d) to be forwarded via the link (a, b).

ysd ∈ [0, 1] Fraction of the packet flow between the node
pair (s, d) that is rejected.

hsd ∈ R≥0 Average flow volume between the node pair
(s, d) in traffic units (i.e., Kbps).

C ∈ R≥0 Link capacity in traffic units (i.e., Kbps).
B ∈ R≥0 Buffer size in data units (i.e., Bytes).
M ∈ R≥0 Large number to penalize a loss more than

a large delay.

TABLE I: Notation

is admitted, eventually getting to the buffer head, where it is
forwarded to a next-hop node n′ ∈ N out

n . At each hop, this
procedure is repeated until the packet finally reaches its final
destination d (or is lost elsewhere en route). Table I gathers
the notation.

B. An Oracle Routing Policy

In this subsection, we propose an oracle policy to be used
as a routing optimality benchmark. We devise a centralized
version of the DPR problem, where an Oracle observer
(different from the routing nodes) has a full knowledge of
the network topology and the traffic matrix. This centralized
version is formulated as the Minimum Cost Multi-Commodity
Flow (MCF) (Min Cost MCF) problem solved by the Linear
Programming (LP) model (1). The optimal solution of this
model provides a lowest-cost routing policy, that we call oracle
routing in the reminder of this paper.

min
{xxx,yyy}

∑
s∈N
d∈N

hsd

 ∑
(a,b)∈E

xsdab +M · ysd

 (1a)

s.t.
∑

a∈N in
n

xsdan −
∑

b∈Nout
n

xsdnb =

 −1 + ysd, if n = s
1− ysd, if n = d

0, otherwise
s ∈ N , d ∈ N , n ∈ N (1b)∑

s∈N
d∈N

hsd · xsdab ≤ C, (a, b) ∈ E (1c)

xsdab ∈ [0, 1], s ∈ N , d ∈ N , (a, b) ∈ E (1d)
ysd ∈ [0, 1], s ∈ N , d ∈ N (1e)

The objective function (1a) minimizes a twofold objective:
(i) primarily, the total amount of rejected traffic

∑
hsd · ysd;

and, (ii) secondly, the average hop count
∑
hsd

∑
xsdab. Min-

imizing (ii) leads to minimize the average end-to-end delay
in this model. The flow conservation constraints (1b) ensure
that all the traffic admitted at source is routed until destina-
tion. The constraints (1c) limit the link capacity. Finally, the

constraints (1d) and (1e) define the lower and upper bounds
on the variables.

The Oracle policy is not necessarily optimal for the DPR
problem, since it was computed to solve a centralized and
flow-based version of the routing problem. The LP model (1)
works with averaged packets’ flows and is unaware of the
traffic dynamics at the packets’ scale (e.g., a burst of packet
arrivals whose data rate exceeds nominal link capacities C).
Hence, a per-packet routing algorithm could find policies
exploiting outgoing buffers, which are unknown for the LP
model (1), able to beat this Oracle routing in some circum-
stances (as we will see in Section IV-C). Anyway, we use it
since it constitutes a high quality benchmark hard to attain
without a global view of the exact network topology and the
precise traffic matrix.

C. The DPR Problem and our DQN Routing Algorithm

The DPR problem consists of deciding, at each node, the
output port (next hop) for each upcoming packet. The objective
is to find a global routing policy that minimizes the end-to-
end delay for all the packets over the network. This problem
can be formalized as Multi-Agent Partially Observable Markov
Decision Process (POMDP) [14]: a Markov Decision Process
where each agent can only locally observe its environment. We
use an approach based on Q-routing [11], but approximating
the Q-value as a neural network (as in [3], [4]), and using as
input the packet destination and the node buffers’ occupancy.
We will use this scheme to describe the POMDP and the RL
approach used to solve it.

Let N be the set of routing nodes (agents), where each
agent n has its own local observation space On and its own
action space An. When a new packet arrives at time t at the
node n, the node n selects as action an the next hop node
n′ to forward the packet to. This decision is taken depending
on the local observation of the router on. As a consequence
of the decision, the agent n receives a reward rn′ from the
next hop node n′: the next-hop packet delay (i.e. the packet
delay to travel from n to n′). A transition is hence made to a
new state. When the packet arrives to a node, this procedure
is repeated. The action an is selected to minimize an estimate
of the expected end-to-end packet delay from the node n to
its final destination. Under the DRL scheme, this estimate,
denoted as Qn(on, an; θn) (the Q-value), is the output of a
DNN with weights θn. This DNN is trained to fit the target
value Y Q

n below:

Y Q
n = rn′ + γ · τn′ · (1− f) (2)

where f indicates if the next hop is the packet destination,
γ ∈ [0, 1] is a discount factor, r is the next-hop packet delay
and τn′ is the remaining end-to-end delay from the next hop
n′ to the destination computed as follows:

τn′ = min
an′∈An′

Qn′(on′ , an′ ; θn′) (3)

where Qn′(·; θn′) is the Q-value estimate of the next hop
agent.

72

In order to approach the estimated Qn(·; θn) to the optimal
Q∗n, at each agent n, the weights θn are updated by stochastic
gradient descent when minimizing the next square loss called
Temporal Difference (TD) error:

LDQN =
(
Qn(on, an; θn)− Y Q

n

)2
(4)

In the next paragraphs, we detail (i) the node observation
representation, (ii) the node action, and (iii) the reward defi-
nition.
Node observation. The node observation On ∈ On is repre-
sented as on = (d, {bi, i ∈ 1 . . . |N out

n |}). This is the concate-
nation of two components: (i) the current packet destination
d and, (ii) the buffers’ occupancy bi, in Bytes, of each node
interface i at the node n.
Node action. The node action an ∈ An is the choice of the
out-neighbor n′ ∈ N out

n of the node n (i.e., the outgoing
interface to this next hop node n′) to forward the packet to
the buffer head.
Reward. The reward rn′ is the next-hop packet delay, defined
as the time required by the packet to travel from the buffer
tail of n up to the buffer tail of the next hop node n′. Then,
it is computed as rn′ = l + q, where: (i) l denotes the
link transmission delay, the transmission latency in the link
connecting n and n′; and, (ii) q refers to the queuing delay,
the time spent by the packet in the outgoing buffer of node n
taking to n′. If, in the next hop node n′, the outgoing buffer
where the packet should be forwarded is full, the packet is
lost, and rn′ is considered as infinity, since the packet did
not arrive at n′. In practice, we use the worst-case end-to-end
delay: |N |×(B+1)

C , that is, the delay of traversing over the |N |
nodes when all the output buffers are full. Thus, the reward can
be measured in time units (typically, in seconds). This reward
definition allows the end-to-end delay estimate Qn(·; θn) to
account for both buffer delays and packet losses, but giving
more weight to the packet losses to favor its minimization in
priority, similarly to the LP model of the oracle routing (see
Section III-B).

D. Neural Network Architecture

In this subsection, we detail the architecture of the neural
network Qn(sn, an; θn), which is depicted in Figure 1.This
architecture is inspired from [4].

The input layer is split into two parts according to the
description of the node state sn in Section III-C: (i) the packet
destination, as a |N |-element vector in one-hot encoding (i.e.
the position corresponding to the destination is set to one, the
rest to zero); and, (ii) the buffer occupancy of outgoing buffers
of node n, as an |N out

n |-element vector, whose values are layer
normalized.

The first hidden layer is also split into two parts, where each
one is a 32-neuron fully connected layer fed by their respective
input. Afterward, their outputs are concatenated before feeding
two 64-neuron fully connected layers.

Finally, the output layer is fully connected with as many
neurons as the node action space (i.e., out-degree |N out

n | of
n). The value of each output neuron is simply the estimate

of the Q-value Qn(sn, an; θn). All the activations are ELUs
(Exponential Linear Units).

E. MA-DRL Signalling: Value Sharing or Model Sharing

DPR consists of forwarding decisions taken in a distributed
manner without cooperation between the routing nodes. How-
ever, with MA-DRL, control signalling exchanges are neces-
sary to enable agent training, since agents need to share their
past observations (i.e., experiences), network metric estimates
and ML models before the training takes place. We consider
two agent information sharing techniques: (i) value sharing
and (ii) model sharing. In the value sharing method, a node
n′ receiving a packet from n sends back to n a control
packet containing the pair (rn′ , τn′). When this packet arrives
at n, it is stored with its corresponding observation-action
pair (on, an) in the replay memory Mn. We refer to these
packets as replay memory update packets. We recall that τn′

is the estimate of the remaining end-to-end delay computed
by the next hop agent n′ at the reception of packet at n′

as Equation (3). In the model sharing technique, the replay
memory update packet contains the pair (rn′ , on′). In this
case, the τn′ estimate is not provided by the neighbor n′ but
computed at the node n by a copy of the next hop agent
DNN Qn′(·, on′ ; θn′). We refer to this copy as target network,
and we denote it as Q̂n′(·; θ−n′) Thus, the model weights θn′

have to be sent from n′ to n periodically to update this target
network, adding a heavier control overhead with respect to
the value sharing technique. We call the packets carrying the
model weights target update packets. The time between two
consecutive target updates is the target update period U , which
controls the overhead level of the model sharing method. The
more often the target networks are updated, the heavier is the
control overhead, since control and data packets compete for
the same bandwidth, which supposes that both packet types
will experience additional queuing delays.

Finally, we conclude this section with Algorithm 1 that
depicts the pseudocode of the training routine of our approach.
We highlight in red and blue italics the lines corresponding to
the value sharing and model sharing method, respectively.

F. A Realistic Evaluation of Signalling with the PRISMA tool

To study the impact of the control signalling, we need a
simulation framework reproducible and realistic enough to
capture the tradeoffs between the control overhead and the
quality of the learned routing. This is enabled by our new
PRISMA tool, detailed in [16] and made available to the
research community [10].

In the previous literature [3]–[6], the DRL approaches were
evaluated on simulation environments (typically implemented
in python) tailored to the assumptions and simplifications
made by each study. Namely, these works do not generally
implement the RL agents as separated threads or processes;
and, they usually assume a unique buffer queue per node and
a fix time slotted operation. As a consequence, only one packet
per router is transmitted at each time step, which introduces
an artificial synchronization among the state transitions along

73

Dense
(32)

+
ELU

Packet
destination
in one hot

(1, N)

Concatenate
(64)

Dense
(64)

+
ELU

Dense
(64)

+
ELU

Dense
(out degree)

+
ELU

Neighbours'
buffer

occupancy
(1,out degree)

+
Layer Norm

Dense
(32)

+
ELU

Fig. 1: NN layers architecture

Algorithm 1: DQN Routing training routine at a node n
with value sharing (or with model sharing)

Input: Training session duration S; Gradient descent update period
T ; Target update period U ; Weights θSP

v , v ∈
{
n ∪N out

n

}
Output: Final routing model weights θn

1 Initialize experience replay memory Mn;
2 Initialize Qn(·) with weights θn ← θSP

n ;
3 Initialize targets Q̂v(·), v ∈ N out

n with weights θ−v ← θSP
n ;

4 while current simulation timestamp t < S do
5 for each arrival packet do
6 Observe the current node state on;
7 Select action an = n′, where

8 n′ =

{
a random neig. v ∈ N out

n ,with prob. ε
argmaxvn∈Nout

n
Qn(on, vn), otherwise

Forward packet p to next hop node n′;
9 Receive back from n′ next hop estimate τ and reward rn;

10 Receive back from n′ next hop state on′ and reward rn;
11 Set packet destination flag f ;
12 Store transition (on, an, rn′ , τn′ , f) in memory Mn;
13 Store transition (on, an, rn′ , on′ , f) in memory Mn;
14 if t mod T then
15 Sample random batch B i.i.d.∼ Mn;
16 Set target values Y Q

n as (2) for B;
17 Update weights θn by gradient descent on TD error

for B;

18 if t mod U then
19 Get neighgbors’ weights: θv , v ∈ N out

n ;
20 Update target weights: θ−v ← θv , v ∈ N out

n ;

the network, constraining the diversity of state transitions that
the simulator permits to observe. This has two main conse-
quences: (i) a reduced realism of the simulated communication
process; and, (ii) an obstacle to fairly comparing these DRL
proposals to state-of-the-art approaches or even against each
other. This lack of standardized ML tools in the networking
community [17] is becoming a major issue to guarantee repro-
ducibility. As a consequence, in the last years, some tools [17],
[18] have been developed to apply RL to networks. These
tools allow python RL agents to interact with the popular
ns-3 network simulator [9]. Nevertheless, these proposals are
not natively compatible with the collaborative and distributed
multi-agent setting of the DPR problem. To bridge this gap,
PRISMA has been proposed in the work [16].
PRISMA is an open-source RL simulation environment

designed specifically for considering the distinctive charac-
teristics of the DPR problem, serving as a playground where
the community can easily validate their RL approaches and
compare them. It introduces a more realistic modelling of the
communication process based on: (i) the ns-3 [9] network
simulator; and, (ii) a multi-threaded implementation for each
agent. It makes use of a modular code design, which allows
researchers to test their own RL algorithms, without needing to
work on the implementation of the environment. PRISMA also
provides visualization tools based on tensorboard [19]
allowing to track training and test phases. All these reasons
make PRISMA better suited to evaluate the control signalling
exchanges, since their evaluation requires: (i) a higher level
of realism to correctly consider the extra delays and traffic
introduced by control packets; (ii) a standardized tool where
different control signalling techniques between agents can be
easily implemented and compared.

IV. SIMULATION EXPERIMENTS

In this section, we present the experimental approach to
answer quantitatively the following research questions:

1) How does the cost and overhead of value sharing and
model sharing strategies evolve when modulating the
target update period U?

2) How much overhead is required to make the model
sharing solution close to the Oracle cost solution?

A. Experiment Settings

Hardware and Software settings. We ran the tests in a
Dell Precision 7920 workstation equipped with an Intel Xeon
Gold 6230R Dual CPU (26 Cores, 2.1-4.0GHz Turbo, 128
GB RAM) with 2 NVIDIA RTX A5000 GPUs, running
Linux Ubuntu 20.04. The DRL agent model is implemented
in TensorFlow [20] version 2.8 as a described in III-D.
The implementation of the MA-DRL method is based on the
OpenAI™ Baselines library [21]. The PRISMA tool [10],
[16] is used as RL simulation environment.
Competitors. We compare the routing optimality of the two
versions of the DQN routing in Algorithm 1 (value sharing
and model sharing) to the Shortest Path routing [22], and the
Oracle routing from LP model (1). The SP routing and Oracle
routing solutions represent performance benchmarks used to

74

assess the quality of the DRL solution. The DQN routing
with value sharing is, in practice, an extension of the original
DQN routing [3], where buffers’ occupancy is added to packet
destination in the node observation on. We cannot compare
directly our DQN routing to the literature algorithms [4]–[6]
since they are based on different assumptions. In DQRC [4],
there is a unique buffer at each node, which constraints
the outgoing node throughput, since, at each time, only one
packet can be transferred from the buffer head to one of
the forwarding ports. In the works [5], [6], the training is
centralized in a node collecting all the past experiences, in
contrast to us, where the training is done on the distributed
node agents.
Evaluation metrics. To measure the performance of each
routing policy, we use the average cost per packet, which
is calculated as the accumulated reward along the simulation
divided by the number of generated packets. We point out that
during a network simulation, we can reward each packet arrival
using the same reward definition as in Section III-C. Thus,
the average cost per packet represents an average end-to-end
delay per packet, where packet losses are also accounted as
worst-case delays (see Section III-C).
Topology and traffic. Simulations are performed over the
Abilene network (|N |=11) [23]. We fix link propagation delay
and link rate C to 1 ms and 500 Kbps, respectively.

Four traffic matrices HHH are generated by sampling each
element hsd from a uniform distribution U(0, 1). We scale up
these matrices by multiplying by a coefficient α. We increase
α up to the largest value αmax for which an optimal routing
with no packet loss can still be found by the LP model (1).
The matrix αmax ·HHH is associated to a load factor ρ = 1.
Data packets are generated as UDP over IP datagrams. Their
payload is 512 B long. The UDP and IP headers are 8 B and
20 B long, respectively. Then, the total packet size is 540 B.
Packet traces are produced assuming that packet inter-arrival
time follows an exponential distribution with mean 540B/hsd.
And, finally, the output buffer size B is fixed to 16, 200 B (i.e.,
30 data packets of 540 B long).
Control signalling packets. As explained in Section III-E,
DRL agents share information in the form of control signalling
packets. For the replay memory update packets, we encode
each float or integer data type unit in 8 B. Then, a pair
(rn′ , τn′) (value sharing) is 16 B long and a pair (rn′ , on′)
(model sharing) is 16 + 8 · |N out

n | B long. Control packets
are also encapsulated into UDP over IP datagrams. For a
target update, the size of a DRL agent model (as described
in Section III-D) is around 36 KB, which we split in target
update packets of 512 B long.
Training procedure. The training is performed in two phases:
a supervised pre-training phase followed by the main rein-
forcement learning phase.
Supervised pre-training is done to improve the convergence
of the DQN routing , as authors in [3] demonstrated. They
pre-trained the Q-network (Qn(·; θn) using a dataset of tuples
{d, LSP

n (d, n′)}, where d is the packet destination, n′ is the
next hop node and LSP

n (d, n′) is the length of the shortest

path between n and d, which contains the next hop node n′.
The Q-network is trained till the square loss is minimized. The
so-obtained weights are denoted as θSP

n .
Main reinforcement learning (see Section III-C). The
weights θn are initialized with θSP

n . The model is trained using
ADAM optimizer with a learning rate of 0.001, batch size of
512, and γ of 1. The total duration of the training session S
is 1 minute (in ns-3 simulation time), which is sufficient to
cancel the agents’ TD error. The gradient descent is launched
every T = 10 ms (in ns-3 simulation time). Moreover, we
use an ε-greedy approach (ε decays from 1 to 0.1) to trade
between exploration and exploitation. We execute different
training sessions for each traffic matrix, information sharing
technique (value sharing and model sharing), replay memory
size and target update period. We consider several values for
the replay memory size (512, 1024, 2500, 5000, 10000, and
15000 experiences), and for the target update period U (from
1s to 9s with 1s step). Each session corresponds to a packet
trace generated using a traffic matrix scaled to the load factor
ρ of 0.4. After each training session, the corresponding model
weights are saved.
Testing procedure. For each trained model, corresponding to
the tuple {traffic matrix, sharing technique, replay memory
size, target update period}, a test phase is performed as the
following. We ran nine simulations for load factors ρ from
0.6 up to 1.4 with 0.1 step. The rationale behind testing for
traffic loads higher than 1.0 is to evaluate the model in highly
saturated scenarios, where buffer delays become huge. The
test packet traces are generated using the same traffic matrix
as training, but scaled to the corresponding load factor ρ. In
other words, with respect to the training procedure, we test
each DNN model with the same traffic distribution among
nodes but with higher loads. The duration (in simulation time)
of each testing simulation was 20 s, which is sufficient to reach
a stationary state in the simulation.

B. Tradeoff between Overhead and Optimality

In this subsection, we evaluate the impact of the control
signalling on the learning performance by studying the tradeoff
between average cost per packet and control overhead ratio.
The control overhead ratio is computed during the training,
as the ratio between the total byte count of signalling packets
and the total byte count of useful data packets. The results
presented are computed as an average over the four traffic
matrices, and the nine load factors.

Figures 2 and 3 show the average cost per packet versus
the replay memory size and the target update period U ,
respectively. From their observation, first, we see that DQN
routing with value sharing has a slightly better average cost
than SP when choosing the experience replay memory size
of 5000 samples. We recall that the original DQN routing
algorithm presented in [3] uses value sharing. However, in [3],
the routing decisions are taken based only on the packet
destination, which yields routing policies close to the SP
routing since features depending on traffic dynamics, as the
buffers’ occupancy, are not provided to the neural network.

75

DQN Routing - Model Sharing
DQN Routing - Value Sharing

Shortest Path Routing
Oracle Routing - LP(1)

Replay Memory Update Signalling
Target Update Signalling

2500 5000 10000 15000512
Experience Replay Memory Size

0.30

0.40

0.50

0.60

0.70

0.43

0.33Av
er

ag
e

C
os

t P
er

 P
ac

ke
t (

s)

Fig. 2: Avg. Cost Per Packet vs Replay Memory Size

1 2 3 4 5 6 7 8 9
Target Update Period U (s)

0.30

0.40

0.50

0.60

0.70

Av
er

ag
e

C
os

t P
er

 P
ac

ke
t (

s)

Fig. 3: Avg. Cost Per Packet vs Target Update Period

1 2 3 4 5 6 7 8 9
Target Update Period U (s)

0.00

1.00

2.00

3.00

4.00

5.00

C
on

tr
ol

 O
ve

rh
ea

d
R

at
io

Fig. 4: Control Overhead vs Target Update Period

1 3 41.50.1
Control Overhead Ratio

0.40

0.50

0.60

0.70

0.33

0.43
0.46

0.28
Av

er
ag

e
C

os
t P

er
 P

ac
ke

t (
s)

Fig. 5: Avg. Cost Per Packet vs Control Overhead

Interestingly, despite the fact that, in the current paper, we
also add the buffers’ occupancy to the neural network input,
our enriched version of the original DQN routing in [3]
does not manage to improve significantly over the SP policy,
obtaining even worse results for any replay memory size value
except 5000, which seems large enough to store the states’
diversity, and small enough to not consider too many outdated
experiences. In contrast, model sharing outperforms the SP
routing and gets close to the Oracle routing cost when the
replay memory is large enough (more than 5, 000 experiences)
and the target update period U is small enough (less than 8s).
This result suggests that routing agents need to share their
DNN models to be able to learn a routing policy close to
an Oracle routing. Previous literature [15], [24] has shown
the importance of conditioning the learning of each agent on
an estimate of the other agents’ policies to alleviate the non-
stationarity effect of MA-DRL. Since other agents’ policies
are continuously updated over time during the training, their
Q-value (and, then τ) estimates become obsolete with time.
For value sharing, that means that the replay memory can
be populated with outdated τn′ conducting to have different
estimates of the end-to-end delay from next hop n′ to destina-
tion for the same state transition (on, an, on′). Model sharing

overcomes this problem by sharing the model Qn′(·, on′ ; θn′).
Since τn′ estimates are computed using Equation (3) at the
gradient descent update, two identical transitions (on, an, on′)
stored at the replay memory will be associated to the same
estimate τn′ of the end-to-end delay from n′.

Figure 4 depicts the relation between target update period U
and the control overhead ratio. In model sharing strategy, the
control overhead strongly decreases with U , since the number
of target update packets diminishes as well. For value sharing,
only the much lighter replay memory update packets are sent,
giving a much smaller control overhead (0.1). This overhead
is shown as constant since it corresponds to only one point
(value sharing does not depend on U). Analyzing in detail the
overhead for model sharing, we see two different behaviors for
the signalling packets. The overhead due to the target model
update packets, the main overhead source, decreases with the
target update period, but the replay memory update packets
overhead increases linearly. This indicates a growth in packet
hops during the training, which is related to a worse training
performance for larger U values: the agents do not achieve to
find short routing policies (see Figure 3).

Figure 5 depicts the tradeoff between average cost per
packet and control overhead ratio for model and value sharing

76

DQN Routing - Model Sharing
DQN Routing - Value Sharing

Shortest Path Routing
Oracle Routing - LP(1)

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Load Factor

0.00

0.20

0.40

0.60

0.80

1.00

Av
er

ag
e

C
os

t P
er

 P
ac

ke
t (

s)

Fig. 6: Average Cost Per Packet.

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Load Factor

0.00

0.05

0.10

0.15

0.20

0.25

Pa
ck

et
 L

os
s R

at
io

Fig. 7: Packet Loss Ratio

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Load Factor

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

E
nd

-t
o-

E
nd

 P
kt

 D
el

ay
 (s

)

Fig. 8: Avg. End-to-End Delay.

techniques. Replay memory sizes are set to the best values
in Figure 2 for each sharing technique: 5, 000 and 15, 000
for value and model sharing, respectively. Each point in the
curve for DQN routing with model sharing corresponds to a
given target update period value U , which is associated to a
given cost per packet (see Figure 3) and a given overhead
(see Figure 4). For value sharing, we have a unique point
corresponding to the cost per packet for the best memory
size (5, 000) and a constant value sharing overhead (0.1).
Two observations can be made from this figure: (i) value
sharing incurs in a very small overhead (0.1) but cannot im-
prove significantly the SP routing performance, and (ii) model
sharing can outperform SP routing and approach the Oracle
performance but with much higher overhead (for U = 5s,
an overhead of 1.5 and a cost 28 % smaller than SP routing
and model sharing). These observations provide an important
insight: for the presented settings, the price to pay to become
close to the Oracle performance is a control overhead larger
than the useful data volume during training.

C. Packet Cost Performance in Detail

We now analyze the performance of DQN routing for both
signalling techniques in terms of: (i) average cost per packet
(Figure 6), (ii) packet loss ratio (Figure 7), and (iii) average
end to end packet delay (Figure 8). The x-axis represents the
load factor, ranging from 0.6 up to 1.4 with 0.1 step, and the
y-axis represents the average, the minimum, and the maximum
value of the corresponding performance metric over the four
traffic matrices. A solid line is used to depict the average value,
whereas the area between the minimum and the maximum
value is presented with a shaded color. In these figures, the
replay memory sizes are fixed to the best values found in the
previous subsection: 5, 000 and 15, 000 for value and model
sharing, respectively. Similarly, the target update period for
model sharing is set up to the selected value of 5s.

From the observation of Figure 6, we confirm the remarks
stated in the previous subsection: in terms of average cost per
packet, the model sharing is always better than value sharing

and SP routing, and close to the Oracle routing performance.
We recall that average cost per packet is computed as an
accumulated reward along a simulation session. Then, it ac-
counts for both buffer delays and packet losses, but giving
more importance to the latter to minimize it in the first place
(see Section III-C) as the LP model of the Oracle routing also
does (see Section III-B). Consequently, Figure 7, that shows
the packet loss performance, presents the same trends.
Figure 8 shows the average end-to-end packet delay for
the different loads. Interestingly, DQN routing manages to
outperform the Oracle routing for medium loads (from 0.7 to
1.1). This can be partly explained by a superior performance
in terms of packet loss (if present, the main contributor to the
average cost per packet) of the Oracle, namely for the loads
1.0 and 1.1, which leads the Oracle to have a poorer behavior
in terms of delay. But, for the loads between 0.7 and 0.9, DQN
routing outperforms the Oracle in delay and matches its packet
loss, yielding a better average cost per packet in Figure 6.
This better behavior of DQN routing can be explained by
the flow-based nature of the LP model of the Oracle routing
policy. This model has a coarse-grained view of the packets’
flows where the notion of packets’ buffers is absent: the LP
model works with flows defined by an average value in traffic
units (i.e., bps). On the contrary, the DQN routing has a fine-
grained view of the flows, being aware of individual packets.
The packets do not arrive at a regular and periodic basis, but
randomly following an exponential distribution, giving rise to
situations where the instantaneous value of flow in traffic units
(i.e., bps) exceeds the average flow. In this case, buffers allow
absorbing the temporary traffic peaks. Particularly, the packet’s
buffers can have a bigger impact on the network performance
when the average traffic becomes close to the nominal network
capacity (medium loads between 0.7 and 0.9), since buffers are
mostly empty for lower loads, and saturated for higher loads.
Therefore, the DQN routing can benefit from the observation
of the buffers’ occupancy in these medium loads to overcome
the Oracle routing, which is unaware of the buffers.

77

V. DISCUSSION

The results presented in this study, especially the ratio
between the signalling packets and useful data packets, may
change if we change the experimental settings, such as using
a larger link rate. Doing so will increase the number of
data packets per second and hence the number of replay
memory update packets. The ratio between replay memory
update signalling and useful data will remain the same, and
so the overhead for target value sharing. However, when
keeping the same target update period, the ratio between target
update signalling and useful data will decrease, and so the gap
in overhead between model sharing and value sharing will
narrow, but the gradient step period T may need to be reduced
to maintain the number of experiences per gradient step, and
hence possibly have a smaller target update period. When
changing network topology, the overhead, particularly the one
due to target update signalling, will scale with the number
of nodes, and so if we add more nodes in the network, the
overhead will increase. The relationship between the overhead,
the performances, and the topology settings will be studied
in future works. To conclude, when changing the network
configurations, DRL based methods needs to be re-evaluated
in a simulation environment taking into account the overhead
of control packets, in order to have a precise estimation of the
net gains of such a MA-DRL routing policy.

VI. CONCLUSION

In this article, we have presented an experimental frame-
work to investigate, for the first time to the best of our
knowledge, the control signalling mechanisms of distributed
learning-based packet routing. In this routing paradigm, node
agents must forward packets using only local information,
solving the so-called Distributed Packet Routing (DPR) prob-
lem. To learn their routing policies, they make use of the
DQN routing, a Multi-Agent Deep Reinforcement Learning
(MA-DRL) algorithm. This framework imposes the neighbor-
ing agents to collaborate during the learning by sharing esti-
mates of the end-to-end delays. We have considered two main
control exchange strategies, value sharing and model sharing,
which we have evaluated in terms of routing cost combining
packet delay and loss rate, each component, considering the
impact of the overhead packets due to control. On the Abilene
topology for various loads and traffic matrices, we have shown
that model sharing yields routing policies able to approach the
optimal one provided by an oracle within 18%, considering the
additional control packets. These represent a control overhead
of 150% of extra traffic in the considered network scenarios.
Conversely, value sharing adds a very small control overhead
(approximately 10 %), but it cannot learn a routing policy
close to the Oracle one, only managing to slightly improve a
Shortest Path (SP) routing. We finally provide a discussion on
the impact of our results, detailing how the ratio of overhead
would evolve when changing base link rates and topologies.
From the present study, we conclude by underlying the impor-
tance of assessing rigorously the signalling entailed by multi-
agent DRL packet routing to obtain a precise estimation of

net gains considering traffic overhead due to signalling. After
this experimental analysis, our future works will investigate
how MA-DRL performance scales with changes of network
parameters, in particular link rates, topology and load.

REFERENCES

[1] Y. Bengio, Learning deep architectures for AI. Now Publishers, 2009.
[2] V. Mnih, K. Kavukcuoglu et al., “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540.
[3] D. Mukhutdinov, A. Filchenkov et al., “Multi-agent deep learning for

simultaneous optimization for time and energy in distributed routing
system,” Future Gen. Computer Systems, vol. 94, pp. 587–600, 2019.

[4] X. You, X. Li et al., “Toward packet routing with fully distributed
multiagent deep reinforcement learning,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, pp. 1–14, 2020.

[5] V. Manfredi, A. P. Wolfe et al., “Relational deep reinforcement learning
for routing in wireless networks,” in 2021 IEEE 22nd International
Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2021-06, pp. 159–168.

[6] L. Chen, B. Hu et al., “Multiagent meta-reinforcement learning for
adaptive multipath routing optimization,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–13, 2021.

[7] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput
in multihop radio networks,” IEEE transactions on automatic control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[8] X. Chen, B. Li et al., “Demonstration of distributed collaborative
learning with end-to-end qot estimation in multi-domain elastic optical
networks,” Optics express, vol. 27, no. 24, pp. 35 700–35 709, 2019.

[9] nsnam, “Ns-3 documentation website,” 11/05/22. [Online]. Available:
https://www.nsnam.org/documentation/

[10] “Prisma tool: An open marl framework for packet routing.” 11/05/22.
[Online]. Available: https://github.com/rapariciopardo/PRISMA

[11] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing
networks: A reinforcement learning approach,” in Proc. Neural Infor-
mation Processing Systems (NeurIPS), 1993, pp. 671–678.

[12] C. J. C. H. Watkins, “Learning from delayed rewards.” Ph.D. disserta-
tion, University of Cambridge, 1989.

[13] J. Schulman, F. Wolski et al., “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[14] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Proc. Intl. Conf. on Machine Learning (ICML),
1994, pp. 157–163.

[15] J. Foerster, N. Nardelli et al., “Stabilising experience replay for deep
multi-agent reinforcement learning,” in Proc. Intl. Conf. on Machine
Learning (ICML), 2017, pp. 1146–1155.

[16] R. A. Alliche, T. Da Silva Barros et al., “PRISMA: a packet routing
simulator for Multi-Agent reinforcement learning,” in 2022 IFIP Net-
working WKSHPS Network Intelligence), Catania, Italy, Jun. 2022.

[17] P. Gawłowicz and A. Zubow, “ns-3 meets OpenAI Gym: The Playground
for Machine Learning in Networking Research,” in Proc. ACM Interna-
tional Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM), November 2019.

[18] H. Yin, P. Liu et al., “Ns3-ai: Fostering artificial intelligence algorithms
for networking research,” in Proc. ACM 2020 Workshop on Ns-3
(WNS3), New York, NY, USA, 2020, p. 57–64.

[19] “Tensorboard: Tensorflow’s visualization toolkit,” 11/05/22. [Online].
Available: https://www.tensorflow.org/tensorboard

[20] “Tensorflow: An end-to-end open source machine learning platform,”
11/05/22. [Online]. Available: https://www.tensorflow.org/

[21] “Openai baselines: high-quality implementations of reinforce-
ment learning algorithms,” 11/05/22. [Online]. Available:
https://github.com/openai/baselines

[22] R. Bellman, “On a routing problem,” Quarterly of applied mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[23] “Sndlib: Library of test instances for survivable fixed telecommunication
network design.” [Online]. Available: http://sndlib.zib.de

[24] R. Lowe, Y. Wu et al., “Multi-agent actor-critic for mixed cooperative-
competitive environments,” in Proc. Neural Information Processing
Systems (NeurIPS), 2017.

78

