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Abstract—Wireless communication has increased signifi-
cantly in recent years. To address future connectivity require-
ments, some researchers are focused on Beyond 5G (B5G)
and Sixth-Generation (6G) wireless technology that capitalizes
on Internet of Things (IoT) technologies to convert sensory
data into actionable knowledge. Intelligent factories that are
networked require real-time, low-latency applications. As IIoT
devices become more widely deployed, real-time data process-
ing at the network edge rather than in cloud data centers is
critical. As a result, deep learning may be a viable choice for
real-time processing. This research proposes DeepSmart, a deep
learning-powered framework for IIoT forecasting and anomaly
detection is proposed in this study. DeepSmart’s hierarchical
architecture for processing correlated time series workflow
model, constructed with long short-term memory (LSTM) as
a significant component, is demonstrated. DeepSmart is evalu-
ated using real-world datasets, and the results demonstrate that
it outperforms established classical approaches in forecasting.

Keywords-6G networks; deep learning; network slicing;
anomaly detection; demand forecasting;

I. INTRODUCTION

55.7 billion IoT-enabled devices will be part of an IoT
infrastructure by 2025. According to [1], enterprises must
prepare a flexible, scalable, data-driven IoT infrastructure
to connect with mission-critical infrastructure and business
innovations on edge devices for equipment maintenance
and monitoring manufacturing operations [2]. Data and
control signals must be transmitted effectively to establish
autonomous, networked, responsive, and effective systems to
achieve this objective. Connectivity allows them to share
and evaluate data. It converts industrial machinery and
businesses into intelligent systems that improve performance,
productivity, and adaptability [3].

Time-Sensitive Networking (TSN) supporting services
that include Ubiquitous mobile ultra-broadband (uMUB),
Mobile broadband reliable low latency communication (MBR-
LLC), Ultra-high speed with low latency communications
(uHSLLC), Massive machine-type communication (mMTC),
Ultra-high data density (uHDD), Human-centric ser-
vices (HCS), and Multi-purpose services (MPS) will be used

in future networks [4]. In an Industrial Scenario, the ideal
system should prioritize time-sensitive control data for factory
floor determinism and dependability, which necessitates
traffic scheduling and prioritization. Time-sensitive data
sharing can alleviate congestion, allowing for more efficient
plant-production monitoring, management, and reporting [5].
Translating data into useful knowledge remains challenging
in time-series monitoring and prediction. For starters, the
industrial time series is vast and expanding. Second, IoT
users anticipate real-time data processing. Third, both short-
and long-term forecasts must be reliable [6].

Edge devices are located close to IoT Sensor nodes offering
low-latency, high-bandwidth access and compute services.
While computationally efficient, traditional forecasting meth-
ods fail to accurately capture the dynamic link between the
objective and the time series current data [7]. Deep learning
has emerged as the dominant technique for solving some
of the most complex challenges in artificial intelligence.
Speech recognition and translation, as well as other tasks
requiring sequential learning, have significantly benefited
from advances in Recurrent Neural Networks, particularly
long short-term memory (LSTM)-based models [8].

To address the challenges mentioned earlier, Based on
the latest edge computing and deep learning, we focus
on forecasting for edge devices to achieve accurate and
timely anomaly detection for multi-type time-series data
while considering the increase in differentiated resource
requirements. Outliers are targeted using the proposed
method’s hierarchy and seasonal decomposition elements,
which detect anomalies. The following are some of the most
significant outcomes of our efforts:

• We present DeepSmart, a conceptual deep learning-
powered framework for predictive analysis and anomaly
detection of Beyond 5G/6G (B5G/6G) sensory data.

• Implement an attention-based recurrent neural network
that uses LSTM to capture the fine-grained properties of
time series data and uses the LSTM module to accurately
and timely detect anomalies.

• Finally, we examine alternatives and conduct extensive
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experiments to evaluate the proposed framework. Fur-
thermore, the testing results indicate that DeepSmart
can accurately forecast high-accuracy demand data.

The remaining sections of the paper are structured as
follows. In Section II, we investigate the related literature.
The DeepSmart architecture and deep learning model design
are proposed in Section III. Experiments on forecasting and
anomaly detection are discussed in Section IV. Finally, in
Section V, we conclude the paper and discuss potential future
work.

II. RELATED WORKS

In [9], the ideal ANN for accumulating predictions from
data streams and time-series data is presented. It is proposed
to combine LSTM with Naive Bayes models. Parallel retrieval
and validation of these trends and forecasts via anomaly
detection. The LSTM predicts data streams, whereas the
Naive Bayes model detects anomalies based on the LSTM’s
predictions. In [10], the application of AE and LSTM
for forecasting the energy production of solar systems is
explained. The deep feature fusion method highlights the
effectiveness of AEs in feature extraction and feature learning.
By layering Deep AE (noise reduction) and contractive AE
(enhanced feature recognition), the ability to learn features
with more negligible effect from background noises is
improved. Because of this, [9] suggests the implementation of
LSTM in complicated IoT scenarios to identify long-term data
relationships. LSTM is an RNN variation that incorporates
memory units. These memory units can recall significant prior
states while forgetting the insignificant ones. To predict the
behavior of energy systems in smart grids [11], it is required
to implement more intelligent systems to make precise
forecasts of future energy consumption. Using a weight-
sharing recurrent neural network and parallel streaming
analytical programming, a real-time public transportation
crowd prediction system is developed in [12] where real-
time analysis is required to respond promptly to unexpected
incidents. Authors In [13] present a CNN-based real-time
solution for traffic sign detection and recognition.

Regarding anomaly detection, we established that an
Autoregressive integrated moving average (ARIMA) is still
used to identify outliers in the time-series data stream [14, 15].
In these works, time-series decomposition was utilized as a
vital tool for analyzing data set abnormalities. Anomaly
detection has been applied to periodic and non-periodic
multivariate time series points. Authors in [16] employ
LSTM (long short-term memory) to detect anomalies.. Such
research demonstrates a mechanism for unsupervised anomaly
detection utilizing mean absolute relative error (AARE).

This research aims to build an adaptive real-time forecast-
ing model to support anomaly detection for elastic demand
in IIoT scenarios. Our approach undertakes several activities
to improve the process of forecasting: seasonal adjustment,
error cycle elimination, trend analysis, residual verification,

and irregular cycle amortization. As a result, enhances
forecasting and anomaly detection.

III. DEEPSMART PROPOSAL

A. Proposed Framework
This study focuses on smart grids and buildings with

time-series sensor readings. We integrate edge computing
architecture with advanced deep learning models to address
monitoring challenges, forecast IIoT real-time sensory data,
draw correlations from historical and operational data, and
conduct forecasting tasks. DeepSmart uses an architecture
based on recurrent neural networks to distinguish between
essential and non-essential characteristics. DeepSmart utilizes
a technique of temporal attention to forecast future demand
and identify anomalies based on decomposition remainders.
The architecture of DeepSmart is depicted in Figure 1.
Additional details are presented below:

• Edge Devices: Edge devices, such as cars, sensors,
and smart buildings, are often agents and clients.
Multiple IoT apps execute and perform sensing activities
concurrently in the utility layer, continuously creating
and transmitting time-series data to the linked edge
devices.

• Forecasting model: That is adapting time series data
to elastic demand scenarios. It includes an Augmented
Dickey-Fuller (ADF) model and a deep learning model
that can predict network demand behavior regardless
of where it originates. Existing forecasting algorithms
benefit from these modifications. Elastic demand scenar-
ios cannot be forecasted using current methodologies
because they lack the necessary corrective variables.

• Unified Computing Server (UCS) edge database:
Servers with high computing capability are typically
used as the Cloud Aggregator. Which are utilized to
collect data, do preliminary processing, and direct
the data flow to the network level. UCS and edge
databases can process and store sophisticated data in
the core layer. Data from multivariate time series can
be mined for features and patterns using the proposed
deep learning models offered by the UCS components.
Based on its comprehensive deep learning models,
UCS can effectively anticipate the future time series
of heterogeneous IoT sensor data, enabling intelligent
routers and gateways to conduct real-time monitoring
and predictive analytics.

This section presents the attention-based model utilized by
LSTM. Fine-grained time series data is collected, and anoma-
lies are detected using an LSTM model. Then, we present
an ADF technique for improving predicting performance.

B. Augmented Dickey-Fuller Model
A time series may be expressed mathematically if the

samples show autocorrelation [18]. For example, if we look
at the autocorrelation between the current and previous values
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Figure 1: Interaction between the proposed Deepsmart approach and 6G network slicing reference framework. [17]

of Yt ✏ Yt�1, we see that they are highly interdependent. Cor-
relation between a pair of samples r over a given period t is
calculated using the autocorrelation function (ACF). For each
pair of observations (y1, y2, y3, . . .), the ACF is calculated for
each pair ((y1, y2), (y3, y4), (y5, y6), . . . , (yn, yn+1)) [19].
An ACF’s autocorrelation coefficients can be represented
using Equation 1, which specifies the time series interval
and average as T and ȳ, respectively.

rk =

PT
t=k+1(yt � ȳ)(yt�k � ȳ)
PT

t=k+1(yt � ȳ)2
(1)

1) Data Decomposition: Deconstructing the time series
Zt, where t 2 {1, . . . , N}, into its Seasonality (St), Trend
(Rt), and Cycle error (Et), while maintaining a constant
mean and variance is the goal of the data decomposition
task. These cumulative features are represented as Zt = St+
Rt + Et. Seasonality [20] reflects annual, monthly, weekly,
or daily oscillations in a time series. Where St+p = St

represents a succession of time-dependent data during period
p. A seasonal component St defined by a moving average
technique is eliminated from the initial data Zt � St = Ct +
Rt+Et where Ct represents the cyclic components. Trend Rt

of a time t indicates the behavior fluctuation and frequency
of a time series defined by: Rt = ȳ + Zt , where ȳ =
1
n

Pn
t=1 yt and where Ȳ is expected for each Y1, Y1, . . . , Yn.

Represented in Figure 2a.
2) Error Cycle Removal: Trend Rt and seasonality St

evaluations are inhibited by low-amplitude cycles. An effec-
tive forecasting system should eliminate erroneous cycles and
random noises Nt. Thus, the proposed ADF model employs
a Moving Mean to investigate the trend and eliminate low-
amplitude data represented by Lt = St +Rt +Nt where Lt

is the data at time t, with t 2 {1, . . . , T}. Moreover, outliers
can be eliminated using a Loess [21] approach to estimate
the relationship between nonlinear variables (See Figure 2a).

3) Stationarity Test: The Stationarity Test evaluates a
data time series long-term, exponential, or regular patterns.
It should be emphasized that approaches that rely on time
series that are not always stationary may be unable to forecast
effectively based on variations in gradient levels over short
or long periods. In this scenario, we consider a time series
(Yi for i = 1, 2, . . . , n) to be a sum total of the deterministic
trend Ti, and random walk Wi, explained by the equation
Wk = Wk�1 + Uk, where Uk is defined as the collection
of random variables with 0 mean and constant variance �2.
Therefore to calculate the stationary error Ei, we follow
the equation Yi = Ti + Wi + Ei. Stationarity analysis is
used in the training set to increase model reliability and
standardize the samples. After the stationary evidence, cycle
errors that destabilize forecasting capacity can be eliminated
as presented in Figure 2b. Following these ADF procedures,
the processed data are transferred to the forecasting technique
discussed in the next section.

C. LSTM Forecasting and Anomaly Detection Model

This paper utilizes a variation of a multivariate LSTM [22]
to forecast sensor time series data to detect abnormalities
accurately. Forecasting uses past samples to estimate future
moves. These approaches follow seasonality and trend.
However, they cannot handle time series with uncertain
patterns. Using the ADF model as a forecasting method
should improve its performance.

In order to identify anomalies, we employ an anomaly
score Mn, which is determined by the equation Mn =
(⇢n � �)T��1(⇢n � �). For each of the sequences Xi, a
reconstruction error defined by ⇢n = |xi

n � x
0i
n | and error

vectors ⇢n, are utilized to estimate the parameters � and � of
a Normal distribution N(�;�) using Maximum Likelihood
Estimation method. Furthermore, to detect if a parameter ✓
at a given point in a sequence time is normal or abnormal
in an unsupervised environment. Precision P and Recall R

118



(a) Visualization of the Seasonality and Trend in the pre-processed
time series

(b) Stationarity Test and Moving Mean application

Figure 2: Visualizations for the ADF model’s operations:
Decomposition (Section III-B1), Error cycle removal (Sec-
tion III-B2), and Stationarity test (Section III-B3).

are applied on the anomaly score which is derived by the
equation Mn � ⇣ (⇣ = max F✓ = (1+✓2)⇥P⇥R

✓2P+R ).

D. Slice Allocation
All access points equipped with edge computing servers

upload their computation jobs to the Slice Aware Network
slicer for the considered Scenario. A projected network slice
is created to ensure that service requirements are satisfied,
with bandwidth and processing resources allocated. Based on
the prediction task information derived by the ADF model’s
forecasting values. Each forecast value represents a client’s
bandwidth need for a certain time period. Thus, an algorithm
should define the most appropriate slice structure in the
network infrastructure to compose a network slice for the time
periods defined based on the predetermined slice network
configuration. Although , the Slice configuration is outside
the scope of this study. We refer interested readers to [17]
for more detailed information on slice allocation.

IV. EXPERIMENT AND RESULTS

A. Evaluation Setup
Using DeepSmart, we undertake two experiments looking

into time series prediction. We explore data preparation,
parameter configuration, and comparison metrics. Then, we
compare the prediction outcomes of DeepSmart and other
baseline techniques to diverse sensory time series. For our
analysis, we use a real-world, crowd-sourced dataset [23]
consisting of a collection of sensor-collected time-series
datasets from various fields. Examples of the power demand
dataset include energy meter readings. These datasets include
both regular and erroneous subsequences. The abnormal
subsequences in the power demand dataset indicate a mal-
functioning electricity meter. These datasets are essential to
training the model for anomaly detection. The forecasting
and anomaly detection algorithm is implemented in Python,
using Keras and Tensorflow as backend.

B. Evaluation Metrics
For evaluating the forecasting performance of the models,

we use mean absolute percentage error (MAPE), root mean
squared error (RMSE) representing the error rate by the
square root of MSE, and R-Squared (R2 Score) that are
derivatives of Mean Absolute Error (MAE)

Pn
i=1 |yi � ŷ|

and Mean Squared Error (MSE)
Pn

i=1(yi � ŷ)2 that repre-
sents the coefficient of how well the values fit compared to
the original values as defined in Table I.

Table I: Performance Metrics

Metric Notation

Mean Absolute Percentage Error MAPE =
100%

n

nP
i=1

=
��� yi�ŷ

yi

���

Root Mean Squared Error RMSE =

s
1

n

nP
i=1

(yi � ŷ)2

R2 Score R2= 1�

nP

i=1
(yi�ŷ)2

nP

i=1
(yi�ȳ)2

C. Results
In a similar simulation environment, the performance of

ARIMA [24], Auto ARIMA [25], SARIMAX [26], LSTM
univariate [27] models were compared to our model. All
models are commonly employed for general forecasting and
anomaly detection tasks. The performance of each model is
tested using data from actual environments (such as power
demand).

1) Training Performance: First, we perform accuracy
training on the models using the dataset. Moreover, measure
the performance of the models against each other considering
computational time to perform forecasting and accuracy in
training for the forecasting. From Table II it is evident that the
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(a)

(b)

(c)

(d)

(e)

Figure 3: Forecasting comparison between (a) ARIMA [24], (b) Auto ARIMA [25], (c) SARIMAX [26], (d) LSTM
univariate [27] and (e) DeepSmart

DeepSmart model has performed significantly well compared
to the other models with the lowest MAPE of 0.123 and
RMSE scores of 0.48001. As a result, this demonstrates that

the DeepSmart model can be used in real-time forecasting
scenarios.
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(a)

(b)

(c)

(d)

Figure 4: Anomaly detection comparison (a) ARIMA [24], (b) Auto ARIMA [25], (c) SARIMAX [26], and (d) DeepSmart

2) Forecasting Results: Second, we compare the predictive
accuracy of the proposed model to that of alternative ap-
proaches. We base the prediction accuracy performance on the
RMSE, MAPE, and R2 Score of the models on the training
set and testing sets. Based on the results acquired from
the training phase in Section IV-C1 with results presented
in Table II. The proposed model has the best relevant

results compared to other methods. For better statistical
comparison, we perform a forecasting test to compare if
the results will match the ground truth. Promising results
show DeepSmart (see Figure 3e) to have higher robustness
while forecasting sensory data compared to the alternatives
presented in Figure 3.
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MSE RMSE MAE MAPE R2 score

ARIMA [24] 0.41487 0.644 0.490 0.171 0.279
Auto-Arima SARIMA [25] 1.100 1.049 0.905 0.369 -0.911
SARIMAX [26] 0.732 0.856 0.596 0.196 -0.271
LSTM Univariate [27] 0.47459 0.68891 0.522 0.236 0.182
DeepSmart (LSTM) 0.23041 0.48001 0.376 0.123 0.602

Table II: Comparative Performance For forecasting

3) Anomaly Detection : Finally, we must compare the
proposed model and competing methods for anomaly identi-
fication. After conducting the experiments, we determine the
ranking of outliers. As indicated in Figure 4 in comparison to
the ground truth as illustrated in (Total Usage) in Figure 2a.
we can conclude that there are no significant differences in
finding anomalies between the approaches used. The LSTM
model does not offer a tight fit for this series, but it is
aware of its low performance and generates wide confidence
intervals. From an initial eye-test of the anomaly detection,
we can conclude it is a reasonable assumption that the
values detected as anomalous should be considered reasonable
within. According to experimental results, the proposed model
outperforms four other IoT forecasting models, demonstrating
that the DeepSmart model is suitable for the task of fore-
casting and anomaly detection environments. The combined
LSTM and ADF model eliminates insignificant variables and
cycle errors. Consequently, the proposed model can accurately
predict real-time time series data and identify anomalies.

As mentioned earlier, the results of the experiments suggest
that the proposed DeepSmart performs well in predicting
IIoT-sensory time series. Consequently, the presented model
detects anomalies correctly and accurately forecasts time
series data. Consequently, the proposed framework for
efficient error elimination is applicable and practical in real-
world applications.

V. CONCLUSION

This paper describes the conceptual design of the Deeps-
mart architecture and presents an attention mechanism for a
deep learning model. DeepSmart is designed to process real-
time industrial and smart IoT data series to provide accurate
forecasting. This study offers a hierarchical architecture for
processing IoT time series and discusses the entire Deepsmart
workflow. Deepsmart outperforms other baseline approaches
in time series prediction in real-world sensory dataset testing,
and it has the potential to be used as an edge forecasting
and anomaly detection infrastructure in our future work.

3GPP considers network slicing necessary for major
characteristics of vital services, including Ubiquitous mobile
ultra-broadband (uMUB), Mobile broadband reliable low la-
tency communication (MBRLLC), Ultra-high speed with low
latency communications (uHSLLC), Massive machine-type
communication (mMTC), Ultra-high data density (uHDD),
Human-centric services (HCS), and Multi-purpose ser-
vices (MPS) .Considering that the forecasting model provides
data on user behavior and service demand, DeepSmart’s

proposal can be used to promote the implementation of these
services. As a result, network providers’ network slices can
be planned, and network resource consumption is projected
to improve network planning for coverage expansion, urban
computing solutions, and more.
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