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Abstract—The great demands of Machine Learning (ML) are
required in many application domains. In the vehicular commu-
nications, new technologies and applications based on ML appear
more frequently. Many studies already show significant benefits
of deploying ML to the Intelligent Transport Systems (ITS),
among which Reinforcement Learning (RL) delivers the best
compatibility. Many vehicular networks have chosen Simulation
of Urban MObility (SUMO) as the mobility simulator, which
provides realistic traffic traces and real-world road maps. In
recent years, many simulation platforms based on the SUMO as
traffic/mobility part and the OpenAI Gym platform are put into
usage, hence, this work serves as an overview of these modern
and realistic simulation platforms, and a comparison is made
from different aspects. Also, the advantages and disadvantages of
each simulator are discussed, and recommendations on different
simulators for researchers are introduced based on their research
topics.

Keywords—Reinforcement Learning, Vehicular Ad-Hoc Net-
work, traffic simulation, OpenAI Gym

I. INTRODUCTION

The simulation of the traffic is also vital for deploying new
technologies from its theorem to the practice at a minimum
or even without cost. Vehicular simulations draw more and
more attention to researchers since recent communication
technology has been proposed and developed, such as Side-
link communication (proposed in 3GPP release 14 [1]). Mod-
ern vehicular communication systems are based on wireless
communications among moving or parking vehicles, which
helps to improve traffic throughput, road safety, driving ability,
etc. Thus, Vehicular Ad-Hoc Networks (VANETs) are pro-
posed for the realistic exchange of messages on road, which
includes the MANET as a subset [2]. Intelligent Transportation
Systems (ITS) is proposed by European Telecommunications
Standards Institute (ETSI) to support wireless communication
between vehicles and infrastructures to deliver diverse traffic
applications [3].

As for the state-of-the-art simulations for the vehicular
network, Machine Learning techniques are considered a new
era. Since the networks nowadays are highly designed and
maintained by computational devices, a large amount of traffic
data are collected and calculated both offline and online.
However, these data are merely just buried underground, and
their potential usage is wasted due to the high computational
complexity. Thus, the idea of deploying Machine Learning
algorithms on the network is to dig deeper into traffic data,
like vehicle speed, position, accident rate, and congestion rate,

and make use of them. Also, various algorithms and learning
techniques, like Deep Learning, Reinforcement Learning can
be deployed to achieve optimized results for vehicular com-
munication systems.

With the fast development and evolution of the ML tech-
nology, there is an option to adjust the network configuration
through the Deep Neural Networks (DNNs). Also, a better
deployment is to use the RL, which is no longer necessary to
produce potentially large training data sets with known desired
outcomes before the training phase. Instead, a reward function
is to be created, that determines and evaluates, whether a
particular behavior is good or not, according to a given state of
the environment. Then an agent will explore the environment
to collect observations, and then make a new behavior based
on the prior training (or guessing), and adapt to itself by the
above-mentioned reward function.

OpenAI Gym, proposed by Brockman et al. [4], is well
known among the RL community. A standardized interface to
an environment is provided by Gym for an RL agent, which
reduces entry barriers and necessary boilerplate, and offers
easy extensions to other projects. The Gym is therefore widely
used in many domains, such as road traffic control [5], and
wireless communication networks [6]. To our knowledge, there
are already well-developed benchmark tools based on Gym for
the Vehicular Ad-Hoc Network (VANET) research, such as the
Flow-Project [7], Veins-Gym [8], SUMO-RL [9].

This study aims to summarize the recent advanced VANET
simulation platform based on the ML/RL, and the work can
be summarized as follows:

• Capability of different VANET simulators with ML/RL
are studied

• A comparison among different simulators is made
• Suggestions for different simulators for different research

areas are proposed
The remainder of this paper is organized as follows. In Sec-

tion II, the major traffic simulator is introduced. In Section III,
different VANET simulators based on ML/RL are discussed.
In Section IV, a comparison between introduced simulators is
made, and suggestions for different simulators are given. In
Section V, the conclusion is drawn.

II. TRAFFIC SIMULATORS

Traffic simulator for VANET communications shall provide
realistic traffic patterns and variable on-road components,
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including personal cars, freight vehicles, public transport, and
even pedestrians. Therefore the SUMO [10], developed by
the German Air and Space Centre (DLR) [11] in 2000, can
be recommended as the traffic simulator. SUMO is an open-
source, microscopic and multi-modal traffic simulation, which
offers user-defined traffic demand modeling throughout a given
road network, that can be model as needed or use the real-
world maps from OSM. Since SUMO is microscopic, each
vehicle is explicitly modeled and has its own driving route,
own vehicle type, and this also fits the modeling of pedestrians,
and the basic components of SUMO are shown in the Figure
1.

Fig. 1: Basic on-road moving components of SUMO, demon-
strated in the city map of Merzig in Germany

Variety of helpful tools are also provided by SUMO and its
community, such as:

• osmWebWizard - extract and create simple real-world
scenario from OSM, using web browser

• Interfacing TraCI from Python - offer simple interface
between SUMO and Python

• Xml Tools - convert SUMO output into CSV/Spreadsheet
and vice versa

• Visualization Tools - offer simple and various visualiza-
tion of simulation outputs

• randomTrips - generates simple random routes for ve-
hicles on demands

• activitygen - generates realistic multi-modal routes for
vehicles, pedestrians, buses, etc.

Among them the Traffic Interface (TraCI) is most important
tool, since it bridges the gap between the traffic simulator
and the network simulator via TraCI interface in Python. The
VANET simulator involved in this work all use the SUMO as
the traffic simulator and also use the TraCI to deliver traffic
information to the network simulator, such as geographic
locations, vehicle speed, vehicle acceleration, heading angle,
and etc.

III. REINFORCEMENT LEARNING PLATFORM

ML/RL frameworks are made accessible to the vehicular
networks in the following open-source simulation platforms,
i.e., the ns3-Gym [12], flow project [7], veins-Gym [8], and

sumo-rl [9]. All the above-mentioned projects deploy the Ope-
nAI gym as the interface to the environment since the interface
is standardized and well acknowledged to the community.
In addition, the environment class offered by gym can be
redesigned and extended as the need of the users, as well as
the observation and action spaces. After the simulation run,
the environment can be reset with the simple calling function
env.reset from gym. The reward function can be selected and
defined by users and the action function can be called by
the RL-agent to perform actions to the environment. After
the whole simulation, a reproducible result can be obtained
by simply applying the pseudo-random number generators, if
needed.

As the agent needs real-time traffic information, the in-
troduced ML/RL projects offer a simple interface from the
network layers to the traffic layers of SUMO, via the TraCI.
The RL-agents collect all the necessary traffic data, such
as average vehicle speed, lane occupancy, average waiting
time, etc., and also the geographic position, including de-
/acceleration, heading angle and CO2. In addition, since the
SUMO supports modeling the pedestrians and the traffic lights,
the RL-agent can be also deployed on the walking persons
and the Road-Side Units (RSUs). In addition, the RL-agent
can also be found in the network layer, such as during the
(de)modulation and for Handover predictions, according to the
user-specific problems.

A. FLOW project

Flow [7] is a deep reinforcement learning framework for
mixed autonomy traffic. It offers the user justifiable traffic sce-
narios, and integrated Deep Reinforcement Learning libraries.
The system-level architecture of Flow is shown in Figure 2.
The environment module delivers the states to the RL-agents
simultaneously during the simulation and the training phase.
Then, the RL-agents response to the environment by their
actions via the installed controller on the vehicle, which adapts
the vehicle speed, de-/acceleration to control the flow of traffic.
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Fig. 2: Architecture of Flow, red car represents autonomous
car with RL-agent; blue car represents the human-driven car

The major idea of the Flow is to deploy autonomous
vehicles in the traffic flow, installed with RL-agents. And
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then, the RL-agents control the vehicle’s behavior according to
the environment. A simple single-lane ring road from Flow’s
example is represented, which is inspired by the 230m track
studied by Sugiyama et al. [13]. Large shock-waves have been
spotted in the ring road, when only human drivers and no
autonomous vehicles are deployed, which causes large traffic
congestion and very low traffic throughput. However, in the
example experiment of flow, several autonomous vehicles are
inserted into the human-driven traffic flow. Each autonomous
vehicle has the abiliy to sense and collect the traffic data from
the environment (vehicles from the behind and in the front).
Thanks to the installed RL-agent, the data is fed into the trainer
in RLlib [14], a Reinforcement Learning library, so that the
autonomous vehicle can de-/increase their velocity to either
slow down the vehicles behind them or to speed up the traffic
flow by catching up the vehicle in the front. After a large
number of trails and training, the autonomous vehicle will
reach an optimized solution and produce the maximum traffic
throughput. Thus, for this ring road example, the theoretical
optimum is, that the vehicles are driving in the road with
equivalent distance.

One of the examples provided by Flow is shown in Figure 3,
where a eight-form intersection is presented, and 14 vehicles
are driving to cross an intersection. The space-time diagrams
are also shown in the Figure 3, and the improvement of
applying RL-based autonomous vehicles can be achieved and
the traffic can be further smoothed with increasing number of
RL-based vehicles in the VANET.

Fig. 3: Example eight-form intersection scenario from Flow,
and space-time diagrams of deploying different number of RL-
based autonomous vehicles [7]

B. NS3-Gym

ns3 is a discrete-event network simulator for Internet sys-
tems, targeted primarily for research and educational use. ns3
is free, open-source software, licensed under the GNU GPLv2
license, and maintained by a worldwide community.

ns3 aims to simulate a realistic networking environment
and can be used as a real-time network emulator. ns3 also
allows the user to interconnect with the real world through

many existing real-world protocols, that are implemented in
the community. Also, the ns3 has simple and extendable
containers for users, such as the Applications, Protocols
and Network Devices, where the user can define its own
applications on demand, and existing real-world protocols
like Transmission Control Protocol (TCP). Then, the network
device can be installed on the simulating entities, connecting
to the channel, as well as in real-world, which allocates the
proper Medium Access Control (MAC) address, configuring
the protocol stacks and parameters.

Fig. 4: Architecture of ns3-Gym

The system architecture of ns3-Gym is shown in Figure 4. In
order to enable the ML/RL feature on the network device, ns3-
Gym has developed an interface called ns3-Gym Middleware,
which interconnects the ns3 network simulator and the OpenAI
Gym platform. The major tasks of the middleware is to transfer
the current state and control the RL-agent, i.e. the observa-
tion and actions, to the simulating environment. Thus, the
middleware has two components, the Environment Gateway
and Environment Proxy. The gateway is installed inside the
network device and serves as the information collector from
the environment state into the numerical data, and also the
corresponding actions are translated. The proxy passes the
environment state to the RL-agent via Gym API based on the
Python.

An example scenario is provied by the ns3-Gym, where a
problem of radio channel selection in a wireless multi-channel
environment is considered. The example scenario is shown
in Figure 5, and the goal is to select a free channel without
interference in the coming time window.

The example scenario can be modeled easily by an RL-
agent based on the proper observation for each channel and
given time slot, and the model will be like:

• Observation - occupation on channel 1-4 and in every
time slots

• Actions - choose the channel being occupied for the next
coming time slot
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Fig. 5: Example scenario from ns3-Gym: Radio channel se-
lection in a wireless multi-channel environment [12]

• Reward - gain +1, if no collision is detected due to
interference, and otherwise gain -1

• End - More than three collisions are detected during the
last 10 time slots

The results of the learning progress is shown in Figure
6, and after around 80 episodes, the next channel state can
be well predicted by the RL-agent based on the current
observation and hence avoid further collisions caused by the
interference.

Fig. 6: Learning performance of the example scenario of radio
channel selection [12]

C. Veins-Gym

Veins-Gym is a simulation platform for breaking the gap
between the vehicular network simulator Veins and the OpenAI
Gym, which is similar to the ns3-Gym. The major difference
to the ns3-Gym, is that the Veins-Gym includes the OMNet++-
based vehicular network simulator Veins, which includes the
modal mobility simulator SUMO, i.e. realistic traffic data
can be collected. Thus, the applicability of the RL-agent is
extended from the network layer to the vehicular traffic layer.
In the Veins-Gym, an interface between Veins and OpenAI
Gym is implemented, which manages the embedded Veins
sequences and communicates with them. As the same, the
Veins-Gym offers users a simple and extensible environment
definition to the desired observation, action and reward spaces.

The Veins-Gym also provides an example scenario, where
RL-agent is applied on the driving vehicles for selection of
suitable communication link technology, and the scenario is
shown in Figure 7

Fig. 7: Example scenario of Veins-Gym [8]

In the example scenario, two connected vehicles are driving
on a serpentine road, modeled by the Lysevegen pass in
southern Norway. The transmitter periodically sends a message
to the receiver through the Visible Light Communication
(VLC) channel, and the RL-agent installed on the transmitter
selects one of the eight communication link technology, made
from the combination of the Dedicated Short-Range Commu-
nication (DSRC) radio, the VLC headlight, and VLC taillight.
The reward is gained, whenever a successful transmission is
achieved, and reduced by the exceeding cost based on the
chosen communication link channel.

During the learning progress, different polices have been
implemented by Veins-Gym as follows:

• DSRC only (#1) - serve as the baseline policy, where
only DSRC is applied

• VLC Head only (#2) - serve as the baseline policy, where
only VLC Head is applied

• Formula (#3) - select between DSRC and VLC Head,
based on the angle and the distance between the trans-
mitter and the receiver

• Convex-Hull (#4) - 1000 pre-sampled observations of
successful transmission with VLC Head is made before
the training progress, and VLC Head is chosen if a
transmission fails into the convex hull denoted by the
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red dots in 7, and DSRC otherwise.
• Multi-Q-Regressor (#5) - an RL-based policy with 8

DNNRegressor estimators from Tensorflow framework.
Selection is made among the above-mentioned commu-
nication link technologies.

The learning performance of different policies is shown in
Figure 8.

Fig. 8: The performance of the different policies of Veins-Gym
example scenario. The Packet Deliver Ratio (PDR) is plotted
against the ratio of packets sent via VLC, which indicates the
resource usage. The grey bars are error bars, that indicate the
standard deviation of the two metrics. [8]

D. SUMO-RL

SUMO-RL provides a simple interface to instantiate Re-
inforcement Learning environments with SUMO for Traffic
Signal Control. The main class SumoEnvironment behaves
like a MultiAgentEnv from RLlib [15]. If instantiated with
parameter ’single-agent=True’, it behaves like a regular Gym
Env from OpenAI. Call env or parallel_env to instantiate
a PettingZoo environment. Traffic Signal is responsible for
retrieving information and actuating on traffic lights using
TraCI API. The system-level architecture is shown in the
Figure 9

Fig. 9: Architecture of the SUMO-RL

In the related Project, namely the Reinforced Signal Control
(RESCO), SUMO scenarios are extracted from the well-know

SUMO traffic network project, "TAPAS Cologne" [16] and
"InTAS" [17], based on the German cities of Cologne and
Ingolstadt. And three benchmark control tasks are assigned to
the two different scenarios:

• Single Signalized intersection
• Coordinated control over multiple intersections along an

arterial corridor, around 500 m long
• Coordinated control over multiple intersections within a

congested area, around 50 km2

Also, comparisons are made among different conventional
traffic signal control and the RL control algorithms:

Baseline controllers:
• Fixed-time: Common Traffic Lights (TLS), changing

Red-Yellow-Green (RYG) phases with fixed time interval
• Max-pressure: Control the TLS phases according to the

traffic pressure, designed in [18]
• Greedy: Control the TLS phases according to the queue

length and approaching vehicle count, designed in [19]
RL controllers:
• IDQN: Assign each intersection with one independent

Deep Q-Network (DQN)
• IPPO: Assign the same deep neural network as IDQN,

except from the output layer from [20]
• MPLight: Implementation with FRAP [21], the Chain-

erRL DQN and the pressure sensing.
• Extended MPLight: Similar implementation to the MP-

Light, in addition to sensing information matching IDQN
to the pressure state

The major implementation of the SUMO-RL focuses on the
RL-agent on the traffic lights at the signalized intersections.
The environment is specifically defined for the signalized
intersections, including driving vehicles and phase-changing
traffic lights. The observation space is made to each road
lane controlled by the related traffic light, and the action is
the choice of the discrete changing state of the signalized
intersection. As for the reward, it is defined as the change
in cumulative vehicle delays, and other different choices for
the reward function can be defined by the user, specific to the
problems.

IV. COMPARISON AND RECOMMENDATION

In Table I, a comparison among different VANET simulators
with OpenAI Gym is made with diverse factors. Based on
the comparison, recommendations can be made to different
research areas and topics of VANET simulations.

For those who would like to simulate large-scale traffic sce-
narios, especially simulating the whole city, Flow or SUMO-
RL without any network communications is recommended
since the VANET communication would results in severely
computational complexity during the simulation, which is
often not the main research subject of the macroscopic simu-
lation. Related researches are the TAPASCologne project [22],
where a large-scale traffic simulation of the city of Cologne,
Germany is conducted. The simulation traces all vehicles for
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TABLE I: Comparison among VANET simulators Recom-
mendations

Simulator Flow ns3-Gym Veins-Gym SUMO-RL
Portability ✓ ✓ ✓ ✓
Scalability small small Large small

GUI × ✓ ✓ ×
Language Python C#/Python C#/Python Python

Documentation ✓ × × ×
Win/Linux × /✓ ✓/✓ ✓/✓ ✓✓

Tutorials/Examples ✓ ✓ ✓ ✓
Module design ✓ ✓ ✓ ✓

VANET features
IEEE 802.11p × ✓ ✓ ×

LTE × ✓ × ×
5G × × × ×

OSI layers × ✓ ✓ ×
Shadowing effect × ✓ ✓ ×
Channel models × ✓ ✓ ×
Obstacle models × ✓ ✓ ×

Mobility
Traffic management SUMO × SUMO SUMO
Machine Learning

ML type RL RL RL RL
AI platform Gym/rllib Gym Gym Gym/rllib
Single agent ✓ ✓ ✓ ✓
Multi agent ✓ ✓ ✓ ✓

24 hours in the city of Cologne covering a 400 km2 region,
and more than 700.000 individual car trips are simulated.

For evaluating and simulating VANET communication net-
works, ns3-gym is to be recommended, since ns3-gym of-
fers both WiFi-based and cellular-based V2X communication.
However, the ns3-gym lacks the traffic mobility models, and
thus, for investigating and deploying any Machine Learning
and autonomous technologies on the VANET, Veins-gym is
to be recommended. Although Veins-gym only offers the
IEEE 802.11p wireless communication protocol, it is still a
recommended choice to evaluate the joint performance of RL
between the network level and the traffic level.

V. CONCLUSION

Since convincing results are needed for research VANET
systems based on the ML/RL, a simulation for such vehicular
communication should be more realistic to the real world,
and also applied with the easy-to-use AI platform. In this
work, various modern and advanced network simulators with
the OpenAI Gym are introduced for simulating different
research areas of VANET and ML/RL topics. The advantages
and disadvantages of each simulator and their specialty for
different topics are recommended.

It turns out that, in order to represent a realistic mobility
simulation, most of the VANET simulators choose SUMO as
their traffic simulator, which has been proved to be the best
mobility simulation for VANET due to its simplicity, high
efficiency, and flexibility.

NS3-Gym and Veins-Gym are recommended for simulating
any VANET topics, which are related to WiFi-based or cellular
networks since the completed OSI-layers are implemented
for both simulators, which can easily be modified into new
network protocols as wished. SUMO-RL and Flow are rec-

ommended for simulating any traffic management problem,
specifically without any network implementation.

Yet, there are still a large number of VANET simulators
available, but the simulators in the future should include more
realistic models, more integration of Machine Learning and
autonomous cars, easier installation and modification, more
environment models to simulate under various weather effects,
and smoother visualization for demonstration.
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