
Optimal Resource Management for Multi-access
Edge Computing without using Cross-layer

Communication
Ankita Koley, Chandramani Singh

Department of Electronic Systems Engineering
Indian Institute of Science
Bangalore 560012, India

Email:{ankitakoley, chandra}iisc.ac.in

Abstract—We consider a Multi-access Edge Computing (MEC)
system with a cloud server, a base station (BS) and an MEC
server attached to it. The resource constrained MEC server can
be dynamically configured to serve different classes of services.
The users send all the service requests to the BS which in turn
keeps a subset of the requests to be served at the MEC and
forwards others to the cloud server. The service requests that
are processed at the MEC server incur queuing and processing
delays whereas those that are sent to the cloud only incur fixed
processing delays. Throughput and delay optimality warrant
uplink packet scheduling at the users, MEC server configuration
and service scheduling at the BS, and service forwarding to the
cloud accounting for the system state. Traditional solutions to
this resource management problem, e.g., those based on back-
pressure , entail cross-layer message exchange. We develop two
virtual queue-based drift-plus-penalty algorithms that do not
require cross-layer communication, are throughput optimal, and
achieve the optimal delay arbitrarily closely. The algorithms offer
a tradeoff between the queuing and processing delays at the MEC
server and the service processing delay at the cloud. We illustrate
the performance of the algorithms via simulations.

I. INTRODUCTION

Most of the digital applications, e.g., travel and navigation,
video streaming, face recognition, augmented reality, gaming,
etc., have been running using the cloud as the primary compute
and storage resource over the last decade [1]. Cloud computing
serves as a cost and energy efficient alternative to local
computation, i.e., computation at users’ machines. However,
compute and storage demands are likely to increase manyfold
in near future, e.g., Cisco has predicted that there will be 500
billion networked devices by 2030. Moreover, data centers will
consume almost 15 times more energy in 2030 than their
current consumption [2]. Hence, solutions solely based on
cloud computing would consume extensive network resources,
and will also incur huge delays, negating the benefits of cloud
computing [3]. Multi-access Edge Computing (MEC) is an
emerging technology in which cloud computing services are
extended to edge of the Internet, i.e., wireless access points
(APs) and base stations (BSs). Edge computing facilitates
energy efficient and quicker execution of resource intensive
tasks of users without incurring significant network resource
consumption and large latencies [4].

This work was supported jointly by Centre for Network Intelligence, Indian
Institute of Science (IISc), a CISCO CSR initiative and Aircel TCoE project
39010C.

MEC, specifically when it involves wireless edge networks,
brings along new challenges a few of which are as follows.
(a) The edge devices, unlike the centralized cloud, have

limited compute and storage capability.
(b) Many contemporary services require sizable data to be

pre-stored at the edge devices.
(c) At any instant, different services have different work-

loads (in bits). Moreover, they also need different amount
of CPU processing resources per unit of workload.

(d) Depending on the instantaneous network loads, wireless
channel conditions, and resource allocation protocols, the
users may receive different Quality of Service (QoS), e.g.,
throughput, latency etc.

Given the dynamism of various attributes, it is imperative
that one judiciously decides where to offload each of the tasks,
i.e., to the MEC server or to the cloud. In particular, one
has to deal with the stochasticity of user requests, wireless
environment and communication, compute resource allocation
at the MEC server, and the delay incurred in processing the
services at the cloud.

Here we develop offloading and scheduling algorithms to
maximize throughput while optimizing the delay in executing
the services either at the MEC server or at the cloud. In
particular, we design algorithms that do not require cross-layer
message exchange, stabilize the MEC system and minimize the
delay.

A. Related Work

Xu et al. [5] study joint caching and task offloading at
the MEC server for energy and computation delay minimiza-
tion but overlook the communication resource scheduling.
Poularakis et al. [6] optimize the number of services hosted
by the BS while accounting for storage, computation, and
communication constraints. However, they only address the
static problem, representing a snapshot of the dynamic system.
They primarily focus on complexity of the static problem and
propose suboptimal solutions.

Dynamic user requests and network conditions warrant
dynamic task offloading algorithms. Throughput optimality is
an important performance criterion for dynamic task offloading
algorithms. Mao et al. [7] address the problem of minimizing
users’ compute and communication energy subject to the

stability of user queues in an MEC system consisting of
multiple users and a single MEC server. However, their model
excludes the primary characteristic of MEC servers, namely,
limited computation and storage resources. Cai et al. [8]
consider a similar problem in a more general setup consisting
of multiple users and BSs and the cloud. While Mao et al. [7]
and Cai et al. [8] consider partial task offloading, i.e., allow
fractions of tasks to be offloaded, their approaches entail
excessive overhead. Firstly, for partial offloading the following
information should be available at the users:
(a) the queue lengths at users’ CPUs and at the MEC servers,
(b) the time-varying wireless channel transmission rate.
The queue length and the wireless channel state information
reside at the application and the MAC/Physical layers, respec-
tively. But communication network protocols use a layered
structure which generally does not allow cross-layer commu-
nication. Although present-day mobile devices have APIs that
allow the application to access wireless channel states which
can be used in offloading decisions, but they still can not
control the scheduling decisions that are made at the MAC
layer. On the other hand, the MAC layer does not have access
to the queue length information of the application layer. Sec-
ondly, there is a need to continuously exchange queue length
information between the MEC servers and the users, which
incurs additional resource consumption and delays. Lastly,
considering the MEC server’s storage constraints besides its
communication constraints is essential.

Throughput-optimality has been an active research topic in
the context of communication networks over the past three
decades. In particular, the back-pressure algorithm which re-
quires per flow queues and queue length information exchange
across the network nodes has been proposed to stabilize multi-
hop networks. Max-weight, self-regulated max-weight [9], and
virtual queue length based max-weight [10] algorithms need
not maintain per-flow queues and do not require queue length
information exchange. But max-weight need not be throughput
optimal for multi-hop networks [11], and self-regulated max-
weight also stabilizes the system only for a restricted class of
arrivals [9]. In contrast, the virtual queue length based max-
weight is throughput optimal [10].

We consider a system with multiple classes of services or
tasks, and a set of users and an MEC server associated with
a BS. The users send all their tasks to the BS which either
queues a task for execution at the MEC server or forwards it
to the cloud. MEC comes with new traffic characteristics and
QoS requirements and warrants solving joint communication
and compute resource allocation problems. Since commu-
nication and computation resource allocations are activities
at two different network layers, the back-pressure algorithm
cannot be applied. For instance, for uplink scheduling at the
MAC layer, the back-pressure algorithm requires differences
between the MAC queue lengths and the per service queue
lengths at the MEC server, the latter available only at the
application layer.

B. Our Contribution

(a) We cast the joint stability and cost (delay for service
execution at the cloud) minimization problem for an

Fig. 1: An MEC System

MEC system accounting for communication, storage, and
computation constraints.

(b) We propose joint scheduling and compute and storage
resource allocation algorithms that do not require per-
service queue length information at the MAC layer and
cross-layer queue length information exchange unlike the
back-pressure based algorithms. Our algorithms use a
virtual queue length-based drift plus penalty framework
and offer same performance as back-pressure. .

(c) Our proofs are based on fluid limit techniques where
the challenging part is to establish throughput optimality
under drift plus penalty framework. Our analysis to
obtain bound on the average queue length and delay for
processing services at the cloud is different from the
existing works.

(d) We validate our results via simulations and show the
trade-off between the queuing and processing delays at
the MEC server and the task execution delay at the cloud.
We also compare the proposed algorithms’ performance
to that of a back-pressure based algorithm via simula-
tions.

II. SYSTEM MODEL

We consider an MEC system with an MEC server attached
to a BS and and a set of users U = {1, 2, · · · , U} associated
with the BS. The BS is also connected to the cloud through
the Internet. The system evolves in discrete time, a unit of
time being referred to as a slot.

A. Service Request Generation

The users request services from the set S={1, 2, · · · , S}.
Let As,u(t) be the number of type-s services requested by user
u at the beginning of slot t. We assume that all the service
arrival processes at all the users are i.i.d. with E[As,u(t)]=λs,u

and E[A2
s,u(t)]<∞. Hence, by the strong law of large numbers

(SLLN), limt→∞
1
t

∑t
τ=1As,u(τ) = λs,u, with probability 1.

We define Amax ≜ maxs,u As,u.
Let ds be the number of packets generated at a user for each

type-s request. Let Au(t) be the number of packets at user u
at slot t and Pu(t) be the cumulative count until slot t. Then
Au(t)=

∑
s∈SAs,u(t)ds and Pu(t)=

∑t
τ=1Au(τ). Each user u

maintains a first-in-first-out (FIFO) queue, Qu(t), where the
packets are stored before being scheduled for transmission to
the BS.

B. Wireless Transmission to the BS

We consider a single wireless channel with J states; our
analysis can easily be extended to multiple channels. We
assume that the channel state process j(t), t ≥ 1 is an
irreducible, positive recurrent Markov chain with stationary
distribution µ. Let ηj,u be the rate achieved by user u when
the channel is in state j.

C. Storage and Computation

The BS is said to have received a type-s service request once
it receives all the ds packets corresponding to that request. Let
Vs,u(t) be the number of type-s requests of user u that received
by the BS at slot t. Let ABS,s(t) be the total number of type-s
requests arrivals at slot t and PBS,s(t) be the cumulative count
until slot t. Then ABS,s(t) =

∑
u Vs,u(t) and PBS,s(t) =∑t

τ=1 ABS,s(τ). The BS maintains a FIFO queue, QBS,s(t),
for each service s. It can choose to process the requests at the
MEC server or to forward them to the cloud.

Let the MEC server have a CPU frequency C cycles/slot
and storage R bits. If the data required for processing type-s
requests is placed at the MEC server, we say that service-s
is hosted by it. Let rs denote the amount of data (in bits)
required to be pre-stored at the MEC server to process type-s
requests, and cs be the CPU cycles needed to process a type-
s request. We define the MEC server configuration at slot t,
X(t) = (Xs(t), s ∈ S), as follows.

Xs(t) =

{
1, if service s is hosted at the server at slot t,
0, otherwise.

Clearly, X(t) ∈ X where

X ≜

{
X ∈ {0, 1}|S| :

∑
s∈S

rsXs ≤ R

}
.

We use N(t) = (Ns(t), s ∈ S) to denote the number of
services scheduled at the MEC server at slot t. We require
that

∑
s Ns(t)cs ≤ C. So, each type-s request needs ex-

actly one slot for processing at the MEC server. Moreover,
N(t) ∈ N (X(t)) where

N (X) ≜

{
N ∈ Z|S|

+ :
∑
s∈S

csNs ≤ C, Ns(1−Xs) = 0 ∀s

}
.

D. Offloading to the Cloud

The link from the BS to the cloud has capacity Ccloud

packets/slot. We use Dc
s(t) and D̃c

s(t) to denote the number
of type-s requests scheduled to be forwarded to the cloud by
the BS at slot t and the actual number of forwarded type-s
requests, respectively. Note that D̃c

s(t) can be strictly smaller
than Dc

s(t) if BS does not have enough type-s requests. Also,
Dc

s(t) ∈ Dc where

Dc ≜

{
Dc ∈ Z|S|

+ :
∑
s∈S

dsD
c
s ≤ Ccloud

}
.

E. Delay Cost for Service Execution at the Cloud
Let ∆s be the fixed round trip time (RTT) incurred in

sending a type-s request to the cloud, executing it there, and
obtaining the result back. We define the delay cost for service
execution at the cloud at slot t as Y (t) =

∑
s∈S ∆sD̃

c
s(t). We

aim at minimizing

lim sup
T→∞

1

T

T∑
t=1

E[Y (t)]

subject to stability of the users’ and the BS’s queues as defined
in Section III-C.

III. OPTIMAL SCHEDULING

A. Capacity Region
We first characterize the set of all service request arrival

rates for which there exists an algorithm that stabilizes the sys-
tem. Let C denote this set, also referred to as the capacity re-
gion of the MEC system. Following standard arguments (e.g.,
see [12]), it can be shown that

C =

{
λ ∈ R|S|×|U| :

∑
s∈S

λs,uds ≤
∑
j∈J

µjβj,uηj,u ∀u,∑
u∈U

λs,u ≤
∑
X∈X

π(X)
∑

N∈N (X)

αXNNs+
∑

Dc∈Dc

ϕ(Dc)Dc
s ∀ s,

where
∑
u∈U

βj,u ≤ 1, βj,u ≥ 0 ∀j ∈ J ∀u ∈ U∑
X∈X

π(X)≤1,
∑

N∈N (X)

αXN≤1,

π(X) ≥ 0, αXN ≥ 0 ∀X ∈ X ,∀N ∈ N (X)∑
Dc∈Dc

ϕ(Dc) ≤ 1, ϕ(Dc) ≥ 0,∀Dc ∈ Dc

}
The above characterization of the capacity region is similar to
that for multi-hop networks in [10].

In the following, with a slight abuse of notation, we use
Qu(t) and QBS,s(t) to denote the queues as well as the re-
spective queue lengths. We summarize the notation in Table I.
Due to space constraint, we only provide outlines of the proofs
which can be found in [13].

TABLE I: Notation

Symbol Description
U Set of users
S Set of services
X Set of service configurations MEC server can host
N (X) Set of number of service configurations MEC Server can

process (given the service configuration X)
Dc Set of service configurations can be sent to the cloud
As,u(t) Number of s-type services requested by user u
Vs,u(t) Number of s-type services requested by

user u arrives at the MEC server
Y (t) cost (delay for service execution at the cloud)
A(t), Â(t) Arrival to the actual and virtual queues
D(t), D̂(t) Departure from the actual and virtual queues
P (t), P̂ (t) Cumulative arrival to the actual and virtual queues
Q(t), Q̂(t) Actual and virtual queue lengths
∆ Delay configuration of the services executed at the cloud
Dc(t) Configuration of services to be executed at the cloud

B. Offloading and Scheduling Algorithm
Note that the system has |U| and |S| queues at the user

and the server ends, respectively. For the proposed offloading
and scheduling algorithms, we also maintain virtual queues
corresponding to each of the |U|+ |S| queues. Let Q̂u(t) and
Q̂BS,s(t) denote the lengths of the virtual queues. Further,
we employ two tuneable parameters ϵ > 0 and W > 0
that can be used to attain the desired tradeoff between the
queuing and processing delays at the MEC server and the
service processing delay at the cloud..
Algorithm 1 (Virtual Queue-based drift-plus-penalty)
At each user:

1) The arrival to virtual queue :

Âu(t) = (1 + ϵ)
Pu(t)

t
2) Scheduling policy at MAC layer:

u∗(t) ∈ argmax
u

Q̂u(t)ηj(t),u

with ties broken arbitrarily
3) Departure from virtual queue at user:

D̂u(t) =

{
min{Q̂u(t), ηj,u(t)} if u = u∗(t)

0, otherwise

4) Departure from actual queue at user:

Du(t) =

{
min{Qu(t), ηj,u(t)} if u = u∗(t)

0, otherwise

At the MEC server:
5) Arrival to the virtual queue:

ÂBS,s(t) = (1 + ϵ)
PBS,s(t)

t
6) Scheduling policy at Application layer:

max
X,N,Dc

∑
s∈S

Q̂BS,s(t)Ns +
∑
s∈S

(Q̂BS,s(t)−W∆s)D
c
s

7) Departure from the virtual queue at the MEC server:

D̂BS,s(t) = min{Q̂BS,s(t), Ns(t) +Dc
s(t)}

8) Departure from actual queue at the MEC server:

DBS,s(t) = min{QBS,s(t), Ns(t) +Dc
s(t)};

Ñs(t) = min{QBS,s(t), Ns(t)} to the MEC server

and D̃c
s(t) = DBS,s(t)− Ñs(t) to the cloud

The users’ actual and virtual queue lengths evolve as

Qu(t+ 1) = Qu(t) +Au(t)−Du(t) (1)

Q̂u(t+ 1) = Q̂u(t) + Âu(t)− D̂u(t) (2)

Similarly, the BS’s and virtual queue lengths evolve as

QBS,s(t+ 1) = QBS,s(t) +ABS,s(t)−DBS,s(t) (3)

Q̂BS,s(t+ 1) = Q̂BS,s(t) + ÂBS,s(t)− D̂BS,s(t) (4)

Clearly, DBS,s(t) ≤ Ns(t)+Dc
s(t)∀s. Let P̂u(t) and P̂BS,s(t)

denote the cumulative arrivals to the virtual queues Q̂u and
Q̂Bs,s, respectively, until slot t. We assume initial condition
As,u(0)=Du(0)=DBS,s(0)=D̂u(0)=D̂BS,s(0)=Dc

s(0) = 0.

C. Optimality Results

Let Q(t)=(Qu(t), QBS,s(t)) and Q̂(t)=(Q̂u(t), Q̂BS,s(t))
denote the queue length vectors of the actual and the virtual
queues at slot t. Let P (t)= (Pu(t), PBS,s(t)) be the vector
of cumulative arrivals at the actual queues. Let us also define
Z(t)=

(
Q(t), Q̂(t), P (t)

t+1

)
. Z(t), t ≥ 0 evolves as a Markov

chain under Algorithm 1. We call this Markov chain stable if
it is positive Harris recurrent [14, Section 3]. Note that

∥Z(t)∥1 = ∥Q(t)∥1 + ∥Q̂(t)∥1 +
1

t+ 1
∥P (t)∥1.

We use Z(z)(t), t≥0 to refer to the Markov process with
initial condition ∥Z(0)∥1=z. To analyze the stability of the
Markov chain Z(t), we consider a sequence of scaled Markov
chains 1

zZ
(z)(zt), z=1, 2, · · ·. The following lemma character-

izes positive Harris recurrence of Z(t) in terms of the scaled
processes.

Lemma 1. [10, Lemma 6] Let there be ξ, T > 0 such that
for any sequence of processes 1

zZ
(z)(zt), t ≥ 0, z = 1, 2, · · · ,

we have lim supz→∞ E
[
1
z∥Z

(z)(zT)∥1
]
≤ 1 − ξ. Then the

Markov chain Z(z)(t), t ≥ 0 is stable.

The following theorem shows that the scaled Markov chains
1
zZ

(z)(zt), t ≥ 0, z = 1, 2, · · · satisfy the condition for
stability as in Lemma 1 under Algorithm 1.

Theorem 2. The MEC System is stable under Algorithm 1 for
any arrival rate vector λ such that (1 + ϵ)λ ∈ C.

Proof: (outline) To prove stability of the MEC system,
we first prove that the virtual queues are stable. Following
Algorithm 1, after large enough time the arrival rates at the
virtual queues become very close to (1+ ϵ)λ. Hence, stability
of the virtual queues implies that the service rates for the
virtual queues are at least (1 + ϵ)λ. Since the service rates of
both the virtual and the actual queues are same, stability of
the virtual queues implies stability of the actual queues.

Arrivals at the virtual queues at the users and at the
MEC server consitute single-hop traffic. The packets in the
virtual queues leave the network after service without getting
transferred to the subsequent hop queues. Hence, the virtual
queues decompose the multi-hop network into two single-hop
networks. Therefore any exchange of queue lengths from the
MEC server to the users is not required. Following are the
main technical steps of the stability proof.

The process
{
Z(t), t ≥ 0

}
is scaled in both time and space

by a sequence of integers {zn} such that zn → ∞ as n → ∞
and the limit of the scaled processes

{
1
zn
Z(zn)(znt), t ≥ 0

}
is referred to as the fluid limit process, z(t) [10], [15].
(a) We show using SLLN that with probability 1

lim sup
n→∞

1

zn

⌈ 1

znt+ 1
∥P (zn)(znt)∥1

⌉
= 0. (5)

(b) We show that with probability 1 for any ζ > 0 there exists
a finite time T such that

lim sup
n→∞

1

zn

∑
s

Q̂(zn)
u (znt) < ζ ∀ t ≥ T. (6)

(c) We show that with probability 1 for any ζ1 > 0 there
exists a finite time T1 such that

lim sup
n→∞

1

zn

∑
s

Q̂
(zn)
BS,s(znt) < ζ1 ∀ t ≥ T1. (7)

(d) Using the above results for virtual queues we show that
there exists a finite time T ∗ ≥ max{T, T1} such that with
probability 1

lim sup
n→∞

1

zn

(∑
u

Q(zn)
u (znt)+

∑
s

Q
(zn)
BS,s(znt)

)
=0 ∀ t ≥ T ∗.

(8)

(e) We obtain Theorem 2 by combining the above results
and by uniform integrability of the scaled sequence
{ 1
xZ

(x)(xT ∗), x = 1, 2, ..}.

The proofs of Steps (a) and (d) are as in [10]. Step (b) also
follows from a similar technique as in [15]. Our main contri-
bution is the proof of Step (c). For an MEC system without
cloud (i.e., when the scheduling policy at the MEC server is
maxX,N

∑
sQ̂BS,s(t)Ns), (7) follows from arguments similar

to those in [10]. But we need more delicate analysis for the
MEC system with cloud. We use the observation that the
scaled limit of the cost W

∑
sD

c
s(t)∆s is 0 since W,∆s and

Dc
s(t) are all bounded.
1) Queue-Length and Cost Bounds: Let Yopt(λ) be the

minimum time average expected delay cost that can be
achieved by any control policy that stabilizes the system under
the arrival rate λ. Let (1 + ϵ)λ ∈ C. Then there exists a small
enough number ϵ1 > 0 such that (1+ϵ)λ+1ϵ1 ∈ C. Therefore
there exists a stationary scheduling policy π̄ such that [16]

E[N π̄
s (t) +Dc π̄

s (t)] ≥ (1 + ϵ)
∑
u

λs,u + ϵ1 ∀s (9)

E[Y π̄(t)] = Yopt((1 + ϵ)λ+ 1ϵ1) (10)

where N π̄
s (t) and Dc π̄

s (t) are the numbers of type-s services
served by the MEC server and sent to the cloud, respectively,
and Y π̄(t) is the delay cost at slot t under policy π̄.

Theorem 3. We obtain the following bounds for the average
expected delay cost and the average expected weighted virtual
queue length at the MEC server.

lim sup
T→∞

1

T

T∑
t=1

E[Y (t)] ≤ B2

W
+ Yopt((1 + ϵ)λ+ 1ϵ1)

lim sup
T→∞

1

T

T∑
t=1

E
[∑

s

Q̂BS,s(t)
∑
u

λs,u

]
≤ B2

ϵ1

+
WYopt((1 + ϵ)λ+ 1ϵ1)

ϵ1
.

where B2 = SU(1 + ϵ)2A2
maxd

2
max + SN2

max + SD2
max.

Proof: Let us consider a Lyapunov function V (t) =
1
2

∑
s Q̂

2
BS,s(t) and define Lyapunov drift ∆V (t) =

1
2

∑
s Q̂

2
BS,s(t+ 1)− 1

2

∑
s Q̂

2
BS,s(t). Then

∆V (t) +WY (t)

=
1

2

∑
s

((
Q̂BS,s(t)−Ns(t)−Dc

s(t)
)+

+ ÂBS,s(t)
)2

− 1

2

∑
s

Q̂2
BS,s(t) +WY (t)

≤1

2

∑
s

(
Â2

BS,s(t) +N2
s (t) +Dc2

s (t)
)

+
∑
s

Q̂BS,s(t)
(
ÂBS,s(t)−Ns(t)−Dc

s(t)
)
+WY (t)

≤B2 +
∑
s

Q̂BS,s(t)
(
(1 + ϵ)

∑t
τ=1 As(τ)

t

)
−

∑
s

Q̂BS,s(t)
(
Ns(t) +Dc

s(t)
)
+WY (t) (11)

where As(t) =
∑

u As,u(t) and B2 = SU(1+ϵ)2A2
maxb

2
max+

SN2
max + SD2

max. Let us define

Θ(T) ≜
T∑

t=1

E

[∑
s

Q̂BS,s(t)
(∑t

τ=1 As(τ)

t
−
∑
u

λs,u

)]
.

Adding and subtracting (1+ϵ)
∑

sQ̂BS,s(t)
∑

uλs,u from (11),
and using (9) and (10) we obtain the following bounds.
Bound on the average expected cost:

lim sup
T→∞

1

T

T∑
t=1

E[Y (t)] ≤B2

W
+ Yopt((1 + ϵ)λ+ 1ϵ1)

+ (1 + ϵ)lim sup
T→∞

1

T
Θ(T). (12)

Bound on the average expected weighted queue length:

lim sup
T→∞

1

T

T∑
t=1

E
[∑

s

Q̂BS,s(t)
∑
u

λs,u

]
≤ B2

ϵ1

+
WYopt((1 + ϵ)λ+ 1ϵ1)

ϵ1
+ (1 + ϵ)lim sup

T→∞

1

T
Θ(T). (13)

Both the bounds follow using standard arguments as in [16,
Chapter 3]. Their proofs can be found in the extended ver-
sion [13, Appendinx C]. The nonstandard part is proving that
lim sup
T→∞

1
T Θ(T) = 0. Below, we provide the key arguments of

this proof.
Firstly, Harris positive recurrence of the Markov chain Z(t)

implies that ∃ a petite set B={z ∈ Z : ||z||1 ≤ κ} for some
κ > 0 and ∃ a T > 0 such that sup

z∈B
Ez[τB(T)]<∞, where

τB(T)= inf{t ≥ T : Z(t) ∈ B} [14, Theorem 3.1]. This
further implies that

∑
sQ̂BS,s(t)≤κ+τB(T)(1+ϵ)Amax and

E[
∑

sQ̂BS,s(t)] ≤ κ+E[τB(T)](1 + ϵ)Amax < κ1 for some
κ1 > 0.

Secondly, since the arrivals satisfy SLLN, for a given δ > 0

∃ a Tδ such that
∣∣∣∑t

τ=1 As(τ)

t −
∑

u λs,u

∣∣∣ ≤ δ ∀ t ≥ Tδ with
probability 1.

Now, we divide Θ(T) into two parts∑Tδ

t=1 E
[∑

s Q̂BS,s(t)
(∑t

τ=1 As(τ)

t −
∑

u λs,u

)]
and∑T

t=Tδ+1 E
[∑

s Q̂BS,s(t)
(∑t

τ=1 As(τ)

t −
∑

u λs,u

)]
. The

first term is finite since Tδ is finite and the second term could
be made arbitrarily small by choosing a small enough δ.
Then taking T → ∞ we obtain lim sup

T→∞

1
T Θ(T) = 0.

By choosing ϵ1 > 0 arbitrarily small we can obtain static
policies that stabilize the MEC system and yield a cost
arbitrarily close to Yopt((1+ ϵ)λ). It is clear from Theorem 3
that increasing W decreases the upper bound on the average
expected delay cost and increases the average expected virtual
queue length. This could be understood as follows. Algorithm
1 chooses the schedules at the MEC server based on the
optimization

max
X∈X ,N∈N (X)

Dc∈Dc

∑
s∈S

Q̂BS,s(t)Ns +
∑
s∈S

(
Q̂BS,s(t)−W∆s

)
Dc

s

which can be decomposed into two parts:

Ns(t) ∈ argmax
X∈X ,N∈N (X)

∑
s∈S

Q̂BS,s(t)Ns, (14)

Dc(t) ∈ argmax
Dc∈Dc

∑
s∈S

(
Q̂BS,s(t)−W∆s

)
Dc

s. (15)

Clearly, Dc
s(t) can be positive only if Q̂BS,s(t) > W∆s. For

a given arrival rate, higher value of W implies less number of
services being sent to the cloud. Therefore, the service rates of
the virtual queues decrease. If the arrival rates are close to the
capacity region boundary, a higher value of W implies higher
virtual queue lengths. Since the service rates of the virtual
and the actual queues are same as per Algorithm 1, the queue
lengths of the actual queues also increase with W . By Little’s
Law the average delay is proportional to the average queue
lengths. So, the parameter W facilitates a trade-off between
the queuing and processing delays at the MEC server and the
delay cost (service execution delay at the cloud).

Remark 1. While our fluid limit based analysis is similar to
the one in Ji et al. [10], we consider a more general scenario:
(a) In addition to proving the stability of the queues, we also

obtain an upper bound on the average delay cost.
(b) Unlike [10] who assume a deterministic network with

fixed link rates, we consider a stochastic wireless network
with time varying channels.

D. An Alternative Algorithm
Here, we propose another algorithm where the scheduler

solves the same optimization problems, but the services sent
to the cloud differ from Algorithm 1.

Algorithm 2 (Virtual Queue-based Drift-plus-penalty
with controlled departure): This Algorithm is same as Al-
gorithm 1 except 7 and 8 are replaced by 7∗ and 8∗.
7∗) Departure from the virtual queue at the MEC server:

D̂BS,s(t) = N̂s(t) + D̂c
s(t) where

N̂s(t) = min{QBS,s(t), Ns(t)} and

D̂c
s(t) = min{

(
Q̂BS,s(t)− N̂s(t)−W∆s

)+
, Dc

s(t)}

8∗) Departure from actual queue at the MEC server:

DBS,s(t) =D̃c
s(t) + Ñs(t) where

Ñs(t) =min{QBS,s(t), Ns(t)} to the MEC server

D̃c
s(t) =min{

(
QBS,s(t)−Ns(t)−W∆s

)+
, Dc

s(t)}
to the cloud

Clearly, the difference between Algorithm 1 and Algorithm
2 lies only in the departures from the virtual and the actual
queues at the MEC server.

Theorem 4. The MEC Network is stable under Algorithm 2
for any arrival rate vector λ such that (1+ϵ)λ ∈ C. Moreover,
Algorithm 2 offers the same queue-length and cost bounds as
in Theorem 3 except B2 being replaced with B2 +S(Nmax +
W∆max +Dmax)

2.

Proof: The proof of this theorem is along the same lines
as the proofs of Theorem 2 and Theorem 3.

Complexity of the scheduling algorithms: The optimiza-
tion problem at the MEC server under Algorithm 1 is NP-
Hard. Let us consider the first part of the problem (i.e., (14)).
For each X∈X we need to solve the following optimization
problem.

P1 : max
∑
s∈IX

Q̂BS,s(t)Ns

subject to
∑
s∈IX

Nscs ≤ C

Ns ∈ [Nmax] ∀s ∈ IX

where IX={s : Xs ̸= 0}. P1 is a bounded Knapsack problem,
a known NP-Hard problem [17]. This can be solved using
Dynamic Programming (DP) [17]. Further, the set X can be
obtained using the brute-force search method. As the number
of services increases, the complexity of finding the set X
increases exponentially. We leave the development of a low
complexity algorithm as our future work. However, (14) can
be approximately solved by the approach in [6]. The second
part of the problem (i.e., (15)) has the same structure as using
P1 and can also be solved by DP. Since the optimization
problem at the MEC server is same for both, Algorithms 1
and 2, Algorithm 2 is also NP-Hard.

IV. BACK-PRESSURE SCHEDULING

To benchmark the performance of Algorithms 1 and 2, we
also develop a back-pressure (BP) based scheduling algorithm
which requires per-flow queue length information at each hop.
As opposed to our model where each user maintains only one
queue, here each user has S queues, one per service type.
Let Qs,u(t) be the queue length for the type-s services at
user u. Let As,u and Ds,u(t) be the type-s service arrivals
at user u and packet departures from Qs,u(t), respectively, at
slot t. Then Qs,u(t+1) = Qs,u(t)+As,u(t)ds−Ds,u(t). The
MEC server maintains per-service queues QBS,s(t) as before.
BP-based drift-plus-penalty algorithm
At each user:

1) Scheduling policy at MAC layer:
wu(t) = maxs(Qs,u(t)− dsQBS,s(t))

+

u∗(t) ∈ argmaxu wu(t)ηj(t),u
s∗(t) ∈ argmaxs(Qs,u∗(t)(t)− dsQBS,s(t))

+

2) Departure from user:

Ds,u(t) =

{
min{Q̂s,u(t), ηj,u(t)} if u = u∗(t), s = s∗(t)

0, otherwise

At MEC server:

1) Scheduling policy at Application layer:

max
X,N,Dc

∑
s∈S

QBS,s(t)d
2
sNs +

∑
s∈S

(QBS,s(t)d
2
s −W∆s)D

c
s

2) Departure from the MEC server:

DBS,s(t) = min{QBS,s(t), Ns(t) +Dc
s(t)}

Recall that the MEC server receives a type-s service request
when it receives all the ds packets corresponding to the
request. Hence, there are residual packets waiting at the BS
until all the packets of the corresponding service arrive. Let
cs,u(t) be the residual packets of the type-s service from user
u at the BS at slot t. Then ABS,s(t)=

∑
u⌊

cs,u(t)+Ds,u(t)
ds

⌋ and
cs,u(t)=cs,u(t−1)+Ds,u(t−1)−⌊ cs,u(t−1)+Ds,u(t−1)

ds
⌋ds. Let

Γ(t)=(Qs,u(t), QBS,s(t)). It is easy to see that Γ(t), t ≥ 0
evolves as an irreducible Markov Chain [18] under BP based
drift-plus-penalty algorithm. The following theorem states the
Markov chain Γ(t), t ≥ 0 is irreducible and positive recurrent
thereby implying that the MEC system is stable under BP
based drift-plus-penalty algorithm.

Theorem 5. The MEC system is stable under BP based
drift-plus-penalty algorithm for any arrival rate λ such that
(1+ϵ)λ ∈ C for any ϵ > 0.

Proof: (outline) The proof follows from Lyapunov
drift analysis for the Lyapunov function L(Γ(t)) =∑

s

∑
u Q

2
s,u(t) +

∑
s Q

2
BS,s(t)d

2
s.

Remark 2. If ds = 1 for all s (i.e., each service has unit
data size), the above algorithm is exactly same as BP-based
scheduling for multihop communication networks.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of Algorithm
1 via simulations. Then, we compare the queue lengths and
delay cost of Algorithm 1 and Algorithm 2. We consider 5
different services, 20 users associated with a BS. At last, we
observe the evolution of queue length for different ϵ. We study
two performance metrics, the aggregate queue lengths (i.e., the
sum of queue lengths of 20 users at the users and the sum
of queue lengths of 5 services at the MEC server) and the
average delay cost. The MEC server has a storage capacity of
25 GB and CPU of frequency 5 GHz [6], and the cloud has
a transmission rate Ccloud = 100 Mbps [19].
Service Specifications [6], [20]:

(a) virtual queue length (b) actual queue length

Fig. 2: Aggregate queue length evolution at the user

Data Storage CPU RTT delay
Services Size (GB) cycles for computing

(MB) (×109) at the cloud (s)
Face 10 10 2.5 3
Recognition

Augmented 10 12 3 3
Reality
Mobile 8 16 3.5 2.4
cloud Gaming
Wearable 1.5 10 1 1
sensor
Video 9 2 3 6
editing

We consider each slot length is 1s, each packet size is 1
Mb, and ϵ = 10−4, and the transmission channel between
is the Gilbert-Elliot channel with transition probability matrix[

0.6 0.4
0.5 0.5

]
. The uplink rate for two different channel states

are 199 and 163 Mbps [6]. We assume that the arrival process
is i.i.d. over the slots and in each slot number of arrivals is a
Poisson random variable with a given arrival rate vector.

A. Throughput-optimality of the MEC system without the
cloud

In this subsection, we demonstrate that Algorithm 1 is
throughput-optimal for the MEC system excluding the cloud
(i.e., W=∞). For this, we consider the arrival rate per user to
be 4.9896 Packets/s and the arrival rate vector for services to
be [0.396, 0.396, 0.198, 0.7920, 0.1980] services/s. The traffic
load constitutes 99 percent of the capacity region. We execute
the simulations for 200000 time slots. Figure 2 and 3 show
that the queues are stable. Since the queue length at the user
is in bits and at the MEC server in service, we observe the
aggregate queue length in each slot at user is higher than at
the MEC server.

B. Throughput-optimality of the MEC system with the cloud

In this subsection, we demonstrate that Algorithm 1 is
throughput-optimal for the MEC system with the cloud.
For this, we consider the arrival rate per user to be
8.8308 Packets/s, the arrival rate vector for services to be
[0.594, 0.792, 0.396, 0.99, 0.396] per s, W = 100 . The traffic
load constitutes 99 percent of the capacity region. We execute
the simulations for 100000 time slots. Figure 4 shows that the
queues are stable.

(a) virtual queue length (b) actual queue length

Fig. 3: Aggregate queue length evolution of the MEC system
with and without cloud

1) Comparison: We consider the same arrival rate as sub-
section A and compare the queue length evolution of the MEC
system after adding cloud (i.e., W=1). Figures 2a and 2b show
that adding the cloud to the MEC system does not affect the
user queue length since it can not change the departure rate
from the user queues. However, it affects the departure to
the MEC server. It is clear from Figure 3a and 3b the queue
lengths of actual and virtual queues reduce when we add the
cloud to the MEC system. The average actual queue length
(i.e., averaged over 200000 iterations) at the MEC server
with and without the cloud are 489.07 and 511.41 services,
respectively. The reduction of queue length is unsurprising
since adding the cloud increases the overall capacity region
if the MEC server acts as a bottleneck of the capacity region.

2) Effect of parameter W and comparison between Algo. 1
and 2: We consider the same arrival rate as subsection B and
vary W from 0 to 2000, and run the simulations for 20000
iterations. We only observe the change in average delay cost
and the queue lengths at the MEC server since changing W
does not affect the queue lengths of the users. As We mention
in the section III, observe that under Algorithm 1 increasing
the parameter W increases the queue lengths in Figure 5 and
decreases the average delay cost in Figure 6. Therefore, W
acts as a trade-off parameter between the queue length and
the average delay cost. The same phenomenon occurs under
Algorithm 2 for the same reason. Figure 5b shows that the
actual queue lengths are slightly higher for Algorithm 1 than
for Algorithm 2. The virtual queue evolution under Algorithm
1 and Algorithm 2 are very close. But the average virtual
queue length (i.e., averaged over 20000 iterations) is smaller
under Algorithm 1. For example, they are 4202.8 and 4205.4
services under Algorithm 1 and 2, respectively for W=500. In
contrast, the average delay cost is slightly lower for Algorithm
1 than for Algorithm 2, see Figure 6. Although Algorithm 2
sends the services to the cloud in a more controlled manner,
the average delay cost is slightly higher than Algorithm 1.
Therefore Algorithm 1 performs better in terms of average
delay cost.

3) Effect of parameter ϵ: This subsection demonstrates how
the parameter ϵ affects the queue lengths. The virtual queues in
Figure 7 and 8 are stable for ϵ=0.01, 0.0001 and grow linearly
with time for ϵ=0.1, 0.2 and 0.5. The reason is for (1+ϵ)λ ∈ C
for the values of ϵ=0.01, 0.0001 and (1 + ϵ)λ /∈ C for the
values of ϵ=0.1, 0.2 and 0.5. The actual queues are stable
when the virtual queues are stable (i.e., for ϵ=0.01, 0.0001).

(a) at user (b) at the MEC server

Fig. 4: Aggregate queue length evolution of the MEC system

(a) virtual queue length (b) actual queue length

Fig. 5: Aggregate queue length evolution of the MEC system
for different values of W

Fig. 6: Average delay cost (delay for service execution at the
cloud) for different values of W

Since larger ϵ implies more arrivals to the virtual queues where
the capacity region is the same, the average queue length
of the virtual queues for ϵ=0.01 is larger than ϵ=0.0001.
However, the average queue length of the actual queues for
ϵ=0.01 is smaller than ϵ=0.0001. The stability of the virtual
queues ensures that the service rate of the virtual queues is
at least (1+ϵ)λ. Since the service rate is the same for both
the virtual and actual queues, for a given arrival rate, the
guaranteed service rate increases as we increase ϵ. Figure 7
and 8 show that the actual queues can be stable or unstable
when the virtual queues are unstable, e.g., for ϵ=0.1, 0.2, 0.5.

C. Comparison to BP-based drift-plus-penalty

We consider the same arrival rate as in Section V-B and
plot the average queue lengths vs. costs for different W . We
run the simulations for 20000 iterations. The average queue
length is calculated, averaging the users’ and MEC server’s
total queue lengths over 20000 iterations. We vary W from

(a) at user (b) at the MEC server

Fig. 7: Aggregate virtual queue length evolution of the MEC

(a) at user (b) at the MEC server

Fig. 8: Aggregate actual queue length evolution of the MEC
system

10 to 5000 and from 8×105 to 1.2×107 for Algorithm 1 and
BP based drift-plus-penalty algorithm, respectively. We note
that Algorithm 1 offers almost same performance as BP-based
drift-plus-penalty (see Figure 9). However, we need to employ
different W in the two algorithms for similar queue length-
cost pairs. As we demonstrated in Section V-B, Algorithms 1
and 2 offer very close performance, so we need not compare
Algorithm 2 and BP-based drift-plus-penalty.

VI. CONCLUSIONS

We have proposed throughput optimal algorithms for task
offloading and scheduling which can achieve average optimal
delay arbitrarily closely without using cross layer communica-
tion. Theorems 2 and 4 establish that the proposed algorithms
are throughput-optimal. Theorems 3 and 4 establish that the
algorithms can yield average delay costs arbitrarily close to
the optimal.

It is of interest to design a sub-optimal solution to the MEC
configuration problem that can provide throughput-optimality

Fig. 9: Average delay cost (delay for service execution at the
cloud) vs queue length for different values of W

or can achieve a substantial fraction of the capacity region.
It also remains to investigate problems where the services
require processing times of more than one slot and experience
dynamic delay costs when executed at the cloud.

REFERENCES

[1] Z. Jiang and S. Mao, “Energy delay tradeoff in cloud offloading for
multi-core mobile devices,” IEEE Access, vol. 3, pp. 2306–2316, 2015.

[2] A. Katal, S. Dahiya, and T. Choudhury, “Energy efficiency in cloud
computing data centers: a survey on software technologies,” Cluster
Computing, pp. 1–31, 2022.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’10, (New York,
NY, USA), p. 49–62, Association for Computing Machinery, 2010.

[4] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in
edge computing: A survey,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2131–2165, 2021.

[5] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, pp. 207–215,
2018.

[6] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Service placement and request routing in mec networks with storage,
computation, and communication constraints,” IEEE/ACM Transactions
on Networking, vol. 28, no. 3, pp. 1047–1060, 2020.

[7] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Power-delay tradeoff
in multi-user mobile-edge computing systems,” in 2016 IEEE Global
Communications Conference (GLOBECOM), pp. 1–6, 2016.

[8] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Mobile edge comput-
ing network control: Tradeoff between delay and cost,” in GLOBECOM
2020 - 2020 IEEE Global Communications Conference, pp. 1–6, 2020.

[9] S. Liu, E. Ekici, and L. Ying, “Scheduling in multihop wireless networks
without back-pressure,” IEEE/ACM Transactions on Networking, vol. 22,
no. 5, pp. 1477–1488, 2014.

[10] B. Ji, C. Joo, and N. Shroff, “Throughput-optimal scheduling in multihop
wireless networks without per-flow information,” IEEE/ACM Transac-
tions on Networking, vol. 21, no. 2, pp. 634–647, 2013.

[11] M. Bramson, B. D’Auria, and N. Walton, “Stability and instability of
the maxweight policy,” Mathematics of Operations Research, vol. 46,
no. 4, pp. 1611–1638, 2021.

[12] R. Srikant and L. Ying, Communication networks: an optimization,
control, and stochastic networks perspective. Cambridge University
Press, 2013.

[13] A. Koley and C. Singh, “Throughput and delay optimal scheduling
for multi-access edge computing without using cross-layer
communication.” https://www.dropbox.com/sh/9oeq0v1wsbtk5qh/
AAAMT4Aa4IdKEKoUvRz7Z76na?dl=0, 2023.

[14] J. G. Dai, “On positive harris recurrence of multiclass queueing net-
works: a unified approach via fluid limit models,” The Annals of Applied
Probability, vol. 5, no. 1, pp. 49–77, 1995.

[15] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,
and P. Whiting, “Scheduling in a queuing system with asynchronously
varying service rates,” Probability in the Engineering and Informational
Sciences, vol. 18, no. 2, p. 191–217, 2004.

[16] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[17] H. Kellerer, U. Pferschy, D. Pisinger, H. Kellerer, U. Pferschy, and
D. Pisinger, “The bounded knapsack problem,” Knapsack Problems,
pp. 185–209, 2004.

[18] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in 2012 Pro-
ceedings IEEE INFOCOM, pp. 702–710, 2012.

[19] H. T. Malazi and S. Clarke, “Distributed service placement and workload
orchestration in a multi-access edge computing environment,” in 2021
IEEE International Conference on Services Computing (SCC), pp. 241–
251, 2021.

[20] R. Montella, S. Kosta, D. Oro, J. Vera, C. Fernández, C. Palmieri,
D. Di Luccio, G. Giunta, M. Lapegna, and G. Laccetti, “Accelerating
linux and android applications on low-power devices through remote
gpgpu offloading,” Concurrency and Computation: Practice and Expe-
rience, vol. 29, no. 24, p. e4286, 2017.

