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Abstract—The Internet is a complex and constantly evolving
system, and congestion control algorithms play a crucial role
in ensuring its functioning by managing network performance.
These algorithms regulate the flow of data within a network and
optimize data transmission for efficiency and effectiveness. They
do this by continuously estimating available network resources
and adjusting the data transmission rate accordingly.

For network operators, identifying the congestion control
algorithms being used on their network is essential to gain
valuable insights into network performance and device behavior.
This information can help them gain a better understanding of
how the network is being utilized and which algorithms are most
effective in different scenarios. With a clear understanding of the
congestion control algorithms in use, they can make decisions
about network design, configuration, and management.

Nowadays, over 85% of total Internet traffic is TCP traffic.
TCP uses different congestion control algorithms, of which BBR
and CUBIC represent 73% of the total TCP traffic. In this work,
we present a method for automatically identifying BBR traffic
on the Internet. Our method relies on analyzing packet inter-
arrival times, specifically comparing the distribution of packet
inter-arrival times during the Slow-Start state of a BBR capture
with those of a CUBIC capture. We introduce a model that
allows us to detect the silence period after packet bursts that
are present in almost all non-BBR congestion control algorithms.
This method is characterized by a very simple frontend signal
processing that exploits the algorithms’ core principles, allowing
for a tiny parameter space dimension (two), which is sufficient
for robust discrimination: an error rate of 4.1% was obtained
on a test dataset independent from training.
Index Terms: Packet trace, TCP variants, packet inter-arrival
times, Slow-Start state, Congestion Control Algorithms, BBR.

I. INTRODUCTION

Today’s Internet is a crowded highway, with multiple ser-
vices and applications competing to provide the best quality
of experience to users while sharing the same network infras-
tructure. The Internet traffic is segmented into packets, each
representing an individual unit of data. When the network’s
capacity cannot handle the transmission of all the traffic
from source to destination, the network becomes congested
[1]. To ensure reliable transmission between the server and
user and to successfully send all the data over the network,
the Transmission Control Protocol (TCP) was introduced in
the late 1980s [2]. To offer the best experience to each
Internet user in a fair manner for others, Congestion Control
Algorithms (CCAs) were introduced [3] as a refinement of the
initial TCP algorithm. CCAs control the number of packets
that can be transmitted over a network at any given time,

depending on the network conditions. They typically do this
by controlling the data transmission so as not to exceed the
so-called congestion window (cwnd) size [4]. The cwnd is a
TCP state variable that represents the maximum amount of
unacknowledged data that can be tolerated by the sender. The
cwnd size is continuously determined by the CCA and adjusted
based on network conditions. Depending on the type of CCA,
the cwnd size is modified to achieve the best performance
while taking into consideration factors such as packet losses,
delay, Packet Delay Variation (PDV), etc.

CCAs can be classified into three different types: loss-based,
delay-based, and rate-based. Loss-based CCAs use packet
losses to determine the cwnd size: a loss event is the primary
congestion signal, leading to deciding a reduction in cwnd.
The most well-known loss-based CCA is CUBIC [5]. Delay-
based CCAs use the variation of latency as the congestion
signal. VEGAS is the best-known CCA in that category [6].
Finally, the so-called Bottleneck Bandwidth and Round-Trip-
Time (BBR) was introduced more recently. BBR is a rate-
based CCA: it uses an estimation of the available bandwidth
along with the round-trip-time (RTT) to build a model of the
network characteristics to determine the packet sending rate
[7].

Several studies have found that TCP represents 85% of
total internet traffic [8], [9]. Currently, CUBIC and BBR are
estimated to represent more than 73% of the Internet traffic
[10]. Due to the different methods of estimating the cwnd and
detecting congestion, significant differences in throughput can
be observed with CUBIC and BBR even when they share the
same network. These differences are strongly correlated with
certain network conditions that give one of them an advantage
over the other [11]. For this reason, network operators are
interested in monitoring the growth and percentage of traffic
for each of CUBIC and BBR CCAs, to optimize their network
infrastructure.

This work presents a method to automatically differentiate
between TCP traffic controlled by CUBIC or BBR. We focus
on the so-called Slow-Start (SS) state phase, i.e. the beginning
of the connection, which features a well-defined, predictable
behavior in both CCAs. Given a TCP connection to classify,
we isolate the SS phase; then we track and compare the
emission patterns over this period, where our analysis has
revealed a significant difference between CUBIC and BBR.
To differentiate between the CCAs, we primarily focus on



the distribution of packet inter-arrival times. Then, to get
better robustness to noise, we introduce a resampling of the
distribution, that leads to a much clearer discrimination.

Using the cumulative distribution function (CDF) of packet
inter-arrival times with this resampling, we obtain a highly
separable representation, making it possible to classify by
simply computing the position of the CDF with respect to
a decision point. This decision point is computed in the
training phase. To assess our method we used two independent
(training and test) datasets, of hundreds of labeled captures
each. The total error rate obtained was 2.6% on the training
set, and 4.1% on the test set.

The remainder of this paper is organized as follows. In
Section II we develop the motivation for this work. In Section
III, we survey the related work on the identification of CCA
variants. An overview of BBR and CUBIC CCAs is given in
Section IV. Our model for identifying BBR CCA is presented
in Section V. An evaluation of our method is presented in
Section VI. The advantages and challenges of our method
are discussed in Section VII. Finally, a conclusion is given
in Section VIII.

II. MOTIVATION

The main objective of our approach is to detect whether
or not pacing is used in a TCP connection. In a paced TCP,
instead of sending new packets immediately after receiving
an acknowledgment, the packets are held back for a certain
duration, which results in less bursty TCP traffic [12]. In other
words, TCP pacing is used to evenly space data sent into the
network over an entire round-trip-time; in this case, data is
not sent in a burst. To measure the fraction of TCP traffic
that is paced, we illustrate this using BBR and CUBIC CCAs.
BBR, with its novel approach both to congestion detection and
sending rate control, is a TCP CCA that paces. On the other
hand, CUBIC, a loss-based algorithm that reduces its sending
rate in case of high levels of packet loss, is a TCP CCA that
does not pace. Recent studies show the impact of pacing on
improving TCP performance [13], especially in the case of
shallow buffers (i.e. small buffer size in routers). Hence, the
number of paced TCP traffic might increase in the future to
cover all TCP CCA flavors.

For network operators, understanding whether the TCP in
use on their network is paced or not is crucial. For instance,
detecting whether pacing is employed within operators’ net-
works helps them measure the burstiness of the resulting TCP
traffic. This burstiness might have an impact on how network
buffers are dimensioned; operators need to adjust buffer sizes
and network management strategies accordingly. For example,
the guidelines outlined in [14] might no longer be appli-
cable. Additionally, bursty traffic can lead to sudden spikes
in network utilization, potentially causing congestion. By
identifying bursty traffic, operators can implement measures
to smooth out traffic patterns, thereby preempting congestion-
related issues.

III. RELATED WORK

A large number of papers have been published on the
identification and inference of TCP CCA. This related work
section focuses on those more directly related to our work.

Padhye et al. [15] developed the TCP Behavior Inference
Tool (TBIT), which performs active measurements to infer var-
ious TCP behaviors such as the initial window and congestion
window (cwnd) of a remote Web server. TBIT can also detect
which of the following CCAs is running on a Web server:
Reno, New Reno, Reno Plus, or Tahoe.

Yang et al. [16] proposed an active CCA identification
approach that uses a random forest algorithm to classify the
CCA variants of a Web server. The classification is based
on two features: the multiplicative decrease parameter applied
when a loss is detected during the SS state and the window
growth function driving the congestion avoidance state. The
authors were able to identify several famous CCAs, such as
NewReno, BIC, VEGAS, and CUBIC.

Mishra et al. [10] developed Gordon, an active tool that
measures the congestion window size and identifies TCP CCA
variants among websites. Gordon measures the cwnd and then
analyzes the reaction of the TCP variants to packet losses to
classify them. In particular, depending on the decrease factor
after a loss or/and the increase factor during the congestion
avoidance state, the TCP variant is identified. To do this they
do not rely on common active measurements, but manipulate
the client to force the server to react against several scenarios,
generating a considerable amount of traffic. For rate-based
CCAs such as BBR, which does not change its cwnd after
a loss, the no-loss reaction is used to determine the CCA as
BBR or unknown.

None of the previously mentioned works address the iden-
tification of BBR on its own by analyzing a packet capture,
nor do they compare CUBIC and BBR traffic. Our method
differs from these works in that it relies only on the analysis
of bidirectional packet traces obtained from classical TCP
downloads to identify BBR traffic. Unlike [15] and [10], we do
not need to generate multiple traffic patterns emulating various
perturbations, as our method consists of analyzing a single,
passive capture of a full connection. We also differ from [16]
as we do not use a heavyweight machine learning algorithm:
indeed, our parameter space is extremely small, thanks to a
novel, well-motivated feature extraction step that taps into the
core design differences between the CCAs. And similarly to
the aforementioned works, we do not need to process our data
online, as our objective is to allow operators to quantify the
amount of each CCA present on their networks and to detect
a paced TCP traffic.

IV. BACKGROUND: CUBIC VS BBR

In this section, we provide some background on CUBIC
and BBR CCAs. We discuss the different states of each CCA,
with a focus on the initial state: Slow-Start for CUBIC and
Startup for BBR. We compare and contrast the similarities and
differences between these two states.



Figure 1: Finite State Machine of CUBIC. Figure 2: Finite State Machine of BBR.

A. Overview: CUBIC & BBR CCA states

1) CUBIC: CUBIC is a loss-based congestion control
algorithm for TCP, that uses a cubic function to model the
temporal evolution of the cwnd after a congestion event [5].
The behavior of the algorithm is represented by a finite state
machine (FSM) with three states: Slow-Start (SS), Congestion
Avoidance (CA), and Fast Retransmit & Fast Recovery (FRR).
Figure 1 shows the FSM of the CUBIC CCA.

2) BBR: BBR is a congestion control algorithm introduced
by Google in 2016 [7], designed to use available network
resources more efficiently than CUBIC. BBR optimizes the
sending rate of the packets based on estimated network con-
ditions, with a focus on the Bandwidth-Delay Product (BDP),
calculated as the measured average bandwidth multiplied by
the minimum Round Trip Time (RTT). Figure 2 shows the
FSM of BBR CCA, with four states: Startup, Drain, ProbeBW,
and ProbeRTT.

B. Slow-Start and Startup

Now we’re looking in more detail into the Slow-Start and
Startup phases, which will later be shown to be of high
relevance for our classification task.

1) CUBIC’s Slow-Start (SS) state: During the SS phase,
CUBIC increases its packet sending rate exponentially to
quickly reach the bottleneck capacity. The amount of data
transmitted between the sender and receiver is controlled
by the minimum of the cwnd and the maximum receiver
window (rwnd) [4]. The first packets are sent according to
the Initial Congestion Window (ICW) and the cwnd size is
doubled after every round-trip-time (RTT) upon reception of
acknowledgments for the sent packets [17]. This is a result of
how CUBIC operates, as it requires confirmation of received
packets through acknowledgments before proceeding to send
another burst of packets. In particular, this results in an
ON/OFF traffic pattern emission as will be developed in Sub-
section V-B. Finally, upon a congestion signal reception, such
as packet loss or increased latency, as indicated by Hystart
[18], or when the SS threshold (ssthresh) is reached, CUBIC
switches from the SS phase to the congestion avoidance state
[19].

2) BBR’s Startup state: Similarly, during its Startup phase,
BBR performs a binary search and increases its sending rate
exponentially by doubling the number of transmitted packets
in each round-trip period. The Startup phase of BBR and

the SS phase of CUBIC have a similar exponential increase
in average rate, but they differ in the detailed emission
mechanism. Unlike CUBIC, BBR does not wait for packet
acknowledgments before sending new packets; it relies instead
on estimates of available resources to drive a slowly-varying
packet shaper. This results in a ”smooth” emission pattern,
without any of the macroscopic-scale ”pauses” exhibited by
CUBIC (see Subsection V-B for more details). Finally, once
BBR determines that the pipe is full by comparison of in-flight
with the estimated BDP, it exits the Startup phase and enters
the Drain state, similar to CUBIC’s transition to Congestion
Avoidance.

As they play similar operational roles, in the remainder of
this paper, we call both of these states, for either CUBIC or
BBR, the SS phase.

V. METHODOLOGY

In the present section, we propose an identification method
based on the different behavior of the CCAs during the SS
state. We first describe the nature of input data (Subsection
V-A), then we elaborate on differences observed on BBR and
CUBIC, with the highest contrast visible during the SS state,
allowing us to characterize each of them based on the analysis
of packet traces (Subsection V-B).

Based on this, in order to detect BBR on a given packet
capture, we first need to automatically detect the end of the
SS state. In prior work, we presented a method to that effect
[20]; we briefly present it in Subsection V-C.

The core of our CCA discrimination method is then pre-
sented in Subsection V-D. The method exploits the distinguish-
ing characteristics of emission patterns of each CCA during
the SS state. In particular, it builds on the empirical distribution
of packet inter-arrival times, with a specific resampling step.
The automatic method is completed with the introduction of
a decision point, calculated as explained in Subsection V-E.

A. Input data representation
In this work, the tcpdump [21] tool was used to capture

TCP packet header traces together with their arrival times as
shown in Figure 3. These captures have been processed, to
extract important timestamped indicators. The most significant
ones for the current task are:

• Sequence number (SEQ): identifies the first byte in a
segment [22]. For a better match-up with the acknowledg-
ments, we denote SEQ as the last byte of the transmitted



Figure 3: A packet trace showing the SEQ, ACK, and BIF
with their arrival times.

segment plus one, i.e. SEQ = sequence number +
length.

• Acknowledgment (ACK): informs the source about the
sequence number of the next expected segment.

• Bytes in flight (BIF): indicates the amount of data bytes
sent by the source but not yet acknowledged. BIF is not
included in packet headers but can be deduced from SEQ
and ACK values by deducing the last received ACK value
from the last emitted SEQ value as shown in Figure 4.
By definition of cwnd, the BIF value is bounded by the
cwnd size at any given time.

• Round-Trip-Time (RTT): represents the delay between a
packet emission and the reception of the corresponding
acknowledgment. We can calculate the RTT value using
the SEQ and corresponding ACK arrival times as shown
in Figure 4.

• Packet inter-arrival time (INTRPKT): represents the
elapsed time between the arrival of two consecutive
packets.

Figure 4: BIF and RTT calculation method

B. Characterization of CUBIC and BBR during SS state
In the context of a connection, it is important to note

that only the source endpoint possesses explicit information

Figure 5: Time-sequence graph of real CUBIC and BBR
connections during SS

regarding the currently employed CCA flavor (CUBIC or
BBR). As a consequence, our study relies on controlled
sources, specifically, our laboratory servers, for trace data to
calibrate our recognition algorithm. Extension of this method
to real-life traffic from third-party servers will be considered
in section VI.

Through the examination of traces, it becomes evident that
the initial stages of a connection reveal distinct emission
patterns between BBR and CUBIC. In Figure 5, we provide
an illustrative example that highlights these differences in
emission patterns during SS.

CUBIC typically exhibit bursty emissions, whereas BBR
displays a smoother emission pattern. This disparity arises
from a fundamental distinction between the two CCAs: BBR
operates on a rate-based mechanism, whereas CUBIC utilizes
a window-based approach. In other words, CUBIC employs
a burst-like behavior where it sends its entire window of
packets at once and then waits for acknowledgments. This
results in the observable pattern of packet bursts followed
by periods of silence in Figure 5. This behavior is inherent
to CUBIC, as it waits for acknowledgments to ensure the
successful reception of sent packets before proceeding with the
transmission of another burst. On the other hand, BBR follows
a rate-based approach and paces its emissions accordingly. As
a consequence, the ON/OFF pattern seen in CUBIC traffic is
absent from BBR, which thus appears extremely smooth in
comparison.

After exiting the SS state, CUBIC also tends to behave
smoothly, as it is subject to the so-called ”ack clocking”
phenomenon [4], due to bottleneck-induced pacing, as shown
in Figure 6.

This precisely happens when reaching the bottleneck ca-
pacity, typically on the SS exit. Hence, the clear difference
in ”burstiness” observed during the SS tends to be blurred
afterward: the SS phase thus presents the optimal period
for discrimination between CUBIC and BBR. Therefore, we
isolate the SS state for each connection and focus on char-



Figure 6: SEQ against time for a CUBIC capture - smooth
behavior after exiting the SS state.

acterizing the emission patterns, specifically the burstiness,
during this period. To evaluate these patterns, our approach
involves analyzing the distribution of packet inter-arrival times
(INTRPKT), derived from packet captures.

C. BIF vs SEQ representation for SS detection

In this work, we aim to efficiently identify the CCA variant
by focusing on the SS state, as the ON/OFF pattern can easily
be detected during this stage as illustrated before in Subsection
V-B. To automatically recognize the SS phase, we will utilize
the BIF versus SEQ representation introduced in [20]. The
main benefit of this representation lies in its predictable shape
and slope during the binary search phase.

Indeed, it can be shown that, during a phase of exponential
rate growth, the representation shows a strong, linear correla-
tion between BIF and SEQ. Moreover, if the rate is doubling
at each RTT, the slope can be predicted, with BIF = SEQ

2 .
If the BIF value falls below the separation line y = x

2
without returning, as shown in Figure 7, it indicates that
the SS state has ended and the CCA transitions to the next
phase. For more details, we refer the reader to [20]. By taking
advantage of the SS-detection method, it is possible to build
a ”BBR vs. CUBIC” classifier for TCP connections, which is
both extremely cheap in training and runtime computational
resources

D. Modelling the distribution of packet inter-arrival times

To get an intuition of the statistical properties of the IN-
TRPKT distribution, we present the Probability Density Func-
tions (PDF) for a BBR (red) versus CUBIC (blue) connection
in Figure 8. Notably, these distributions demonstrate a distinct
dissimilarity in shape. Unlike BBR, the CUBIC distribution is
typically heavy-tailed, indicating a higher probability of longer
inter-arrival times.

Figure 7: Automatically detecting SS state exit time with slope
1/2 method [20].

Figure 8: The PDF of INTRPKT

1) CUBIC distribution: The primary peak observed in
the CUBIC inter-arrival distribution corresponds to the short
INTRPKTs within bursts, while the heavy tail represents the
longer INTRPKTs resulting from periods of silence between
two bursts. If we denote N as the average number of packets
in a burst, then the probability for an INTRPKT to belong
to a burst is N

N+1 , while the probability for it to belong to a
silence between two bursts is 1

N+1 . We can then express the
PDF of the INTRPKT as a mixture distribution f , as shown
in this equation:

f(x) =
1

N + 1
g(x) +

N

N + 1
h(x) (1)

Here, g(x) is the PDF of the OFF period, while h(x) is the
PDF of packet interarrival times within bursts.

2) BBR distribution: On the other hand, a typical BBR
distribution displays a single peak primarily focused on small



Figure 9: The PDF of INTRPKT after resampling (uniform
over time)

values. This is because occurrences of large INTRPKTs are
relatively rare in BBR due to its smooth emission pattern.
Therefore, the discrimination task can be simplified to distin-
guish between single-peak distributions (BBR) vs. heavy-tailed
distributions (CUBIC).

3) Expanding small contributions: In the CUBIC case, it
can be noted in Eq. 1 that the large-INTRPKT component
is dwarfed by the short-INTRPKT component. This is due
to the significantly larger number of events within a burst
compared to the relatively small number of pauses between
bursts. However, in order to effectively discriminate between
single-peak and heavy-tailed distributions, it is necessary to
address this imbalance by amplifying the minority contribu-
tion, specifically the long-INTRPKT component.

Note that, as with any distribution, the CUBIC PDF (Eq. 1)
can be approximated using an empirical distribution based on
the measured INTRPKT values:

f̂(x) =
1

T

T∑
i=1

1xi
(x) (2)

To magnify the minority contribution, we thus weight each
observed INTRPKT value xi by wi =

xi∑T
j=1 xj

So we now consider the rebalanced empirical distribution
f̂bal:

f̂bal(x) =

T∑
i=1

wi1xi(x) =
1∑T

j=1 xj

∑
i

xi1xi(x) (3)

Notably, if the timescale is renormalized to [0, 1] for the ob-
servation period (SS state), then

∑T
j=1 xj = 1 and f̂bal(x) =∑

i xi1xi
(x).

An interesting observation is that the resulting empirical
distribution f̂bal closely approximates the distribution of IN-
TRPKTs that would be observed if sampling were uniform
over time (Figure 9) rather than uniform over packets (Figure

8). Specifically, choosing each sampling instant uniformly over
the observation period corresponds to a Poisson sampling
approach. Due to the PASTA (Poisson Arrivals See Time
Averages) property, the probability of a sampling instant
occurring during a burst or a silence period is TON

TON+TOFF

and TOFF

TON+TOFF
, respectively, where TON (respectively TOFF )

is the average duration of a burst (respectively of a silence).
Therefore f̂bal(x) is an empirical approximation of the fol-
lowing mixture distribution:

ϕ(x) =
TOFF

TON + TOFF
g(x) +

TOFF

TON + TOFF
h(x) (4)

It can be observed that the weight TOFF

TON+TOFF
of g(x) in

Eq. 4 is not negligible (contrary to the weight 1
N+1 in Eq.

1). By replacing a uniform sampling strategy across packets
with a uniform sampling strategy over time, more weight
is assigned to the inter-packet intervals that correspond to
silences between two bursts. This property is significant as
it allows for better differentiation between the INTRPKT
distributions of CUBIC and BBR.

E. Choice of the optimal decision point

To capture distribution characteristics in a resolution-
independent manner, we transition from PDFs to CDFs. Fig-
ures 10a and 10b respectively display the raw and re-balanced
CDFs of INTRPKTs during the SS state for CUBIC and BBR.
It can be observed that in the rebalanced case, which mimics
uniform sampling over time, the two distributions exhibit
much better separation compared to the raw case, which
corresponds to the original uniform sampling over packets.
The use of rebalanced CDFs enhances the distinction between
the INTRPKT distributions of CUBIC and BBR, providing a
more effective means of discrimination.

Let us assume that our goal is to identify if a TCP connec-
tion is BBR traffic or not. This problem can be considered
as a test between two hypotheses: H0 : {CUBIC} and
H1 : {BBR}. We are going to propose a method that takes a
decision based on the INTRPKT values x1, x2, . . . , xT mea-
sured during the SS state. As there are more long INTRPKTs
in CUBIC, then we decide the connection is using CUBIC if
the proportion of values (xi)i=1,T greater than a threshold x
is larger than y. On the contrary, if the proportion of values
(xi)i=1,T greater than x is smaller than y, then we decide
BBR. In simpler terms, we aim to find a point (x, y) in Figure
10b that effectively separates the red and blue curves. If the
curve (x, f̃(x)) (Eq. 3) lies below this point, we classify it as
CUBIC, and if it lies above the point, we classify it as BBR.
Considering that there are two types of risks in a hypothesis
test, namely false alarm, and non-detection, we propose fixing
the value of y = θ(x) for a specific x. This choice ensures
that both risks have an equal probability. In Figure 10b, this
corresponds to positioning the point (x, y) approximately in the
middle between the blue and red curves, assuming an equal
number of CUBIC and BBR connections. The optimal x is
then selected to minimize the total probability of error, which



(a) CDF of INTRPKT for a CUBIC and BBR capture using the raw
distribution (uniform sampling over packets)

(b) CDF of INTRPKT for the same captures using the re-balanced
distribution (uniform sampling over time). A typical decision point
(x; y) is shown.

Figure 10: Comparison between CDFs of a CUBIC and BBR
packet capture using two sampling techniques - the blue curve
represent CUBIC traffic and the red curve represents BBR
traffic.

encompasses both false alarm and non-detection probabilities.
This approach helps minimize the probability of misclassifying
a connection.

VI. METHOD EVALUATION

In this section, we evaluate our method and model for
classifying connection captures, using two datasets: one of
221 packet captures for training, and the other of 583 packet
captures for testing. We use the single decision point selected
from our training dataset on the dataset dedicated for testing.

A. Packet traces characterization

The packet traces were captured on one of our servers,
which was accessed by multiple active probes via the public
Internet. The measurements were performed by conducting
several downloads from our server with BBR and CUBIC
CCA algorithms. Our server is based in Europe and our probes
are on another continent.

For the sake of representativity, we positioned our probes
across two different countries. In addition, our downloads
were carried out during peak and off-peak hours, seeking
different levels of congestion. Table I shows the variations
in the exit time of the SS state across the different downloads
(packet captures), showing different resource conditions for the
different TCP connections. Indeed, as the CCA stays in the
SS state as long as it estimates that the bottleneck capacity
is not yet reached, the variation of the exit time of the SS
state reveals variations in the available network resources. The
average RTT of our captures varies between 100ms and 400ms,
while the majority fall between 200ms and 300ms as shown in
Table II. For the considered probe destinations, an RTT value
less than 250 ms usually indicates a good QoE, on the other
hand, an RTT value higher than 250 ms normally means a
congested network.

SSET (sec) <0.4 [0.4;1[ [1;1.6[ [1.6;2.2[ [2.2;2.8[ >2.8
Downloads 1% 14% 22% 30% 32% 1%

Table I: Distribution of exit time of the SS state (SSET) for
the considered dataset. Variation in the exit time of the SS
state can be an indicator of variation in the available network
resources.

RTT value (ms) <200 [200;250[ [250;300[ >300
Downloads 1% 53% 45% 1%

Table II: Distribution of RTT values for the considered dataset.
For the considered destinations less than 250 ms corresponds
to good connections and higher than 250 ms to a congested
network.

B. Difficulties in selecting representative packet traces

Our study primarily focused on the analysis of TCP packet
traces exhibiting good and poor connections. To identify
TCP packet traces with bad connections, we employed a
comparative approach by comparing the throughput obtained
during file downloads using TCP BBR or TCP CUBIC with
the throughput achieved using a UDP connection. UDP, being
a connectionless protocol that prioritizes speed and efficiency
over reliability, provides a reference point for comparison. In
an ideal condition, the throughput of TCP and UDP connec-
tions should be similar. Therefore, any significant difference in
throughput between the TCP and UDP connections is consid-
ered an indication of an anomaly within the TCP packet trace.
This approach allows us to detect instances where the TCP
connection deviates from the expected behavior, potentially
pointing to underlying issues affecting the connection quality.



Figure 11: Choice of the decision point using 221 packet
captures in which 88 CUBIC and 133 BBR captures - the blue
curves represent BBR and the red curves represent CUBIC.

Figure 12: Model evaluation on an independent test set using
583 packet captures in which 389 BBR and 194 CUBIC - we
have obtained a 4.1% total error rate.

Upon collecting the necessary packet traces, we conducted
a detailed analysis of each trace to assure the collection of
various packet traces. The manual classification was employed
to identify and categorize each CUBIC or BBR download into
good or bad connections. By examining various performance
metrics, including throughput, we were able to gain insights
into the nature and characteristics of the anomalies present
in the TCP packet traces. This methodology enabled us to
effectively collect a representative dataset. We note that the
gathering and analysis of the 804 downloads used for training
and evaluation were done over a 4-month period due to
the substantial time required for labeling and analyzing each
trace, which can be a time-consuming and resource-intensive
process.

C. Choice of the decision point using a training dataset

To determine the optimal decision point, we conducted
training on a dataset comprising 221 packet captures, including
133 BBR captures and 88 CUBIC captures. By utilizing
the equal-error-rate minimization approach described earlier,
applied to the resampled CDF curves of these packet captures
as shown in Figure 11, we identified the decision point to be
at (x = 0.14, y = 0.503). In essence, the optimal decision
criterion involves comparing the median of the resampled
INTRPKT distribution with 0.14 ∗RTT .

By employing the aforementioned decision point, the mini-
mum total error rate attained on the training dataset amounts to
2.6%. Given the degenerate nature of the optimum (multiple
points yielding the same error rate), we selected the central
point to ensure a wider margin. This selection provides more
robust and reliable discrimination between the CUBIC and
BBR. The confusion matrix is displayed in Table III. 1 over
88 CUBIC captures would be identified as BBR and 2 over
133 BBR captures would be identified as CUBIC with the best
decision point (x, y).

Predicted CUBIC Predicted BBR Total
Actual CUBIC 87 1 88
Actual BBR 2 131 133

Table III: Confusion matrix of the training data.

D. Testing the decision point to identify BBR CCA

To assess our approach, we gathered a total of 583 packet
captures, consisting of 389 BBR and 194 CUBIC captures.
The resampled CDF curves of all 583 captures are displayed
in Figure 12. By utilizing the decision point obtained from
the training dataset, our model is capable of identifying the
TCP variants with an overall error rate of only 4.1%. None
of the 194 CUBIC captures are misclassified, while 16 out of
the 389 BBR captures are mistakenly classified as CUBIC as
displayed on the confusion matrix of Table IV. This slight bias
indicates the need for a larger and more diverse training set,
which we plan to incorporate in future work.

Predicted CUBIC Predicted BBR Total
Actual CUBIC 194 0 194
Actual BBR 16 374 389

Table IV: Confusion matrix of the evaluated data.

VII. MODEL ADVANTAGES AND FUTURE CHALLENGES

We propose a ”BBR vs. CUBIC” classifier for TCP connec-
tions, which is both extremely cheap in training and runtime
computational resources (as the model comprises only two
dimensionless scalars and feature extraction is trivial), and
quite promisingly accurate as per our preliminary evaluation.

Despite our confidence in the approach, we recognize that
various obstacles could jeopardize it if newer versions of
CUBIC and BBR were to be widely adopted by the indus-
try. The first that comes to mind is BBRv2 [23], the most



recent version of BBR, which incorporates an improved loss
detection mechanism to better react to changes in network
conditions. However, this improvement does not impact our
method since the pacing rate during the SS state remains
unchanged. Of more concern could be newer versions of
CUBIC resorting to some level of pacing, which might blur the
rather clear contrast with BBR during the SS phase. However,
at the time of writing only a small part of providers turn
to this option, partly due to its absence in the default stack
tuning of popular operating systems. Should this state of affairs
evolve, one might consider addressing this 3-class task with
two decision points, with somewhat lowered accuracy.

VIII. CONCLUSION

In this work, we presented a method to automatically
differentiate between BBR and CUBIC traffic. Our method
focuses on the sending rate of each CCA during the slow-
start phase, specifically by analyzing the inter-arrival times
of packets. We used the empirical CDF of inter-arrival times,
under a pertinent resampling allowing us to give significant
weight to underrepresented events (long inter-arrival times,
corresponding to off periods). These CDFs are then compared
to a decision point calculated during the training phase to
minimize the total equal error rate. Our method was trained
on 221 packet traces, including 133 BBR and 88 CUBIC
captures, and evaluated on 583 traces, including 389 BBR and
194 CUBIC captures collected over 4 months under various
network conditions. Our method achieved a 4.1% total error
rate with no false negatives among the 389 BBR captures.

On another aspect, the CCA classifier could take part in
the investigation of how bursty the produced TCP traffic is,
which depends on the fraction of TCP sources that pace. As
paced TCP traffic shows better performance than no-paced
TCP, operators are interested in detecting the burstiness of
TCP traffic to improve their infrastructures in order to offer
better quality of experience to their customers. In future work,
we will focus on applying our method to other TCP CCA and
testing it under a mix of BBR and no-BBR traffic happening
simultaneously. We also consider extending our recognition
and detection of the paced TCP traffic beyond the slow-start
state to cover the congestion avoidance state.
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