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Abstract—The on-demand activation of frequency bands in
radio access networks can lead to a significant reduction of energy
consumption, but risks to adversely impact performance. This
approach to frequency band management can be applied either
to a group of co-located base stations whose operators adopt a
network sharing approach or to a single base station that uses
multiple frequency bands. We develop a stochastic model based
on the Matrix Analytic Method for the quantification of system
performance and energy consumption in the case of coexisting
streaming and elastic services. By computing numerical results
in a specific setting, we show that the on-demand (de)activation
succeeds in greatly reducing energy consumption with respect
to the case in which frequency bands are always active, with
limited impact on the performance experienced by users. We also
show that the introduction of a hysteresis in the frequency band
activation/deactivation process allows the optimization of the
energy/performance tradeoff. Finally, we show that performance
is not drastically altered by the burstiness of the elastic service
request arrival process, and we prove that the separate analysis
of streaming and elastic services provides quite optimistic results
with respect to the joint analysis made possible by our model.

Index Terms—Radio access network, Resource on demand,
Performance modeling, Matrix geometric method
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I. INTRODUCTION

We are approaching the middle of the 2020’s, and research
in 6G is proceeding at full steam. In the meanwhile, the
deployment of 5G still remains way below market expectations
and expert forecasts. This is due to a number of adverse
factors, some of economical nature, some related to technical
features. One of the most relevant issues hampering the diffu-
sion of 5G is the high CAPEX (capital expenditues) required
for the deployment of 5G radio access networks (RANs)
and core networks (CN). Investments are difficult because
in several countries mobile network operators (MNOs) are
experiencing periods of very low return on investment. This
has led to the concepts of multi-operator RAN (MORAN) and
multi-operator CN (MOCN). These concepts have important
similarities with the network sharing (NS) approach that was
quite unpopular with MNOs just a few years ago, but are
now viewed much more favorably because they allow the
sharing of investment costs. A second issue that is delaying the
deployment of 5G RANs is the high energy consumption of the

technology, which leads to a significant increase of one of the
largest components of OPEX (operational expenditures). Also
in this case, NS approaches, possibly combined with dynamic
resource management algorithms that tailor the quantity of
active resources to the instantaneous traffic load, can alleviate
the problem.

In this paper, we investigate the performance of one or more
base stations (BS) that activate frequency bands on demand,
according to the instantaneous traffic load. This can be the
case of one or more colocated BSs shared among two or
more MNOs, each having some licensed frequency bands,
and sharing their bands in order to improve performance, or a
BS that is dynamically managed by one MNO that has been
licensed several frequency bands. The dynamic management
of frequency bands aims to reduce energy consumption.

We consider the presence of a large number of applications,
leading to a mixture of traffic types loading the BS. We cate-
gorize traffic types into streaming and elastic traffic. Streaming
traffic is produced by real time audio or video, with the latter
producing most of the load. Elastic traffic is generated by many
different application types, from messaging to web browsing
to social media. The main difference between streaming and
elastic traffic is that the former uses a roughly constant bit rate,
while the latter can use a highly variable bit rate, adapting to
what is available. Actually, also streaming traffic can adapt its
rate to the data rate available in the network. However, the
capability of adaptation is different. Streaming applications
(in particular video) can use different types of source coding,
that correspond to different data rates, but the number of
possible data rates is limited. Instead, elastic traffic can exploit
whatever data rate it is offered, sharing it among the active
applications, each using up to a maximum data rate.

In this paper, we develop a model for the investigation of the
performance and of the energy consumption of a BS providing
a diverse set of services, resulting in a mix of streaming
and elastic traffic. Performance is measured in terms of the
blocking probability of streaming services and of the aver-
age completion time of elastic services. Energy consumption
accounts for both the fixed and the load-proportional energy
consumption of the BS, also including the energy cost for
the switch-on and switch-off of the equipment associated with
each frequency band.978-3-948377-03-8/19/$31.00 ©2025 ITC
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We consider different options for the on-demand activa-
tion of frequency bands. Our baseline case assumes that all
frequency bands are always active. At the other extreme,
frequency bands are activated only when strictly necessary
to serve the instantaneous streaming traffic. As intermediate
scenarios, we also look at the possibility of introducing a
hysteresis mechanism to delay the deactivation of a frequency
band. This approach increases the data rate available to elas-
tic services and avoids excessive switch-on and switch-off
frequencies, which can negatively affect equipment lifetime
and performance.

We develop a model of the BS by exploiting the matrix
analytic (MA) method [1], [2], that allows us to jointly account
for streaming and elastic traffic and to compute performance
and energy consumption metrics.

The main contributions of this paper are the following.
‚ We propose an on-demand approach for the management

of the frequency bands in a base station
‚ We present a Markovian stochastic model of the oper-

ations of a base station loaded by data traffic resulting
from a diverse mix of applications

‚ We use the matrix analytic method to solve the stochastic
model and derive expected stationary performance and
energy consumption metrics

‚ We discuss numerical results, showing that the proposed
dynamic frequency band management can offer perfor-
mance comparable to that of the always-on approach,
while significantly reducing energy consumption

The rest of this paper is structured as follows. Section II
describes in detail our assumptions on the base station archi-
tecture and operations. Section III presents the model of the
BS dynamics, first considering streaming services only, and
then using the MA approach to jointly consider streaming and
elastic services. Section IV presents and discusses numerical
results in a representative case, and shows that the separate
analysis of streaming and elastic services leads to quite in-
accurate performance predictions. Section VI concludes the
paper and discusses possible extensions of the work presented
in the paper.

II. THE BASE STATION

We consider one or more BSs that can use νf frequency
bands licensed to one or more MNOs to provide streaming and
elastic services to end users roaming within the area covered
by the BSs radio frequency (RF) emissions. We assume that
each frequency band can carry a user plane data rate equal to r
b/s, so that the total data rate available at the BSs is R “ νf r.

Streaming services correspond to the transmission of
real-time video and audio (possibly embedded into vir-
tual/augmented reality or gaming applications). Since video
streams typically require much higher data rates than audio
streams, we neglect the presence of the latter, and only
concentrate on the impact of real-time video on performance
and energy consumption. In addition, the analysis that we
present in this paper assumes that video streaming requires
a fixed data rate, thus not considering the possibility of video

quality adaptation at the source with different coding schemes.
Adding audio and variable video coding rate in our modeling
approach is doable with limited modeling effort at the cost of a
higher computational complexity [3]. The data rate requested
by each video stream is rv b/s. As a result, the maximum
number of video streams carried by each frequency band is
νv “ t r

rv
u. The duration of video services is described by

independent, identically distributed random variables τv .
Elastic services correspond to a very large number of appli-

cations, from messaging to web browsing, social media, app
store accesses, music and short video chunk downloads, etc.
This kind of services can exploit the data rate available in the
frequency band after the allocation of the data rate to streaming
services. We assume that elastic services, if any is active,
can evenly share the data rate that is not used by streaming
services, each elastic service using up to re b/s. The size of
the data to be transferred within an elastic service instance is
described by independent and identically distributed random
variables σe. The duration of the j-th elastic service is obtained
by decreasing σe according to the number of simultaneously
active elastic services and the data rate available after the
allocation to streaming services, following a PS (processor
sharing) scheme, and considering that each service can use at
most re b/s.

Users, together with their user equipments (UEs) move
within the area of the cell defined by the BS RF emissions. We
characterize the dwell time in the cell as a random variable,
δ, so that the duration of services in the cell is the minimum
between the actual duration of the service and the time spent
by the corresponding UE in the cell. Since the duration of
streaming services is normally much longer than the one of
elastic services, and it can be confidently assumed that an
elastic service that is started while the UE is in the cell will
terminate before the UE leaves the cell, our model neglects
the impact of dwell times on elastic services.

The time sequences of service requests correspond to ser-
vice activations by users within the cell area, as well as
services that started in a neighboring cell, but reach the cell
under consideration because of the user roaming into the cell.
We will not distinguish between the two types of arrivals,
and we describe the rates of arrivals of service requests of
streaming and elastic services with λs and λe, respectively.

Assume that the BS is equipped with just two frequency
bands and that r is an integer multiple of rv . In this case,
the dynamic allocation of the BS frequency bands operates
such that when no video stream or very few video streams are
active, only one frequency band is used. When the number of
active video streams increases to r

rv
´1, the second frequency

band is activated, since it is necessary to avoid starving the
bandwidth for elastic services, and allowing the admission of
new video streams without incurring the delay necessary for
the frequency band activation.

When the number of active video streams decreases back to
r
rv

´ 2, the second frequency band can either be immediately
deactivated or not, depending on the desired BS operations. If
the second frequency band is not immediately deactivated, an
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Fig. 1: CTMC model embedding streaming behaviour and hysteresis

TABLE I: Steady-state solution of the CTMC in Fig. 1

πpi,˚, 1q “ πp0,˚, 1q
λi
s

i!µi
, 1 ď i ď N ´ ℓ ´ 1 _ N ď i ď 2N

πpN ´ ℓ ´ 1 ` h,˚, 1q “ πp0,˚, 1q
λN´ℓ´1
s

pN ´ ℓ ´ 1q!µN´ℓ´1

ℓ´hÿ

i“0

ˆ
µ

λs

˙i

pN ´ ℓ ` hqpiq

ℓÿ

i“0

ˆ
µ

λs

˙i

pN ´ ℓqpiq

, 1 ď h ă ℓ ` 1

πpN ´ ℓ ´ 1 ` h,˚, 2q “ πp0,˚, 1q
λN´ℓ´1`h
s

pN ´ ℓ ´ 1 ` hq!µN´ℓ´1`h
´ πpN ´ ℓ ´ 1 ` h,˚, 1q , 1 ď h ă ℓ ` 1

hysteresis is generated, the number of frequency band switch-
on and switch-off is reduced, and the data rate available for
elastic services is increased, with respect to the immediate
deactivation of the frequency band. Of course, the immediate
deactivation has the advantage of a lower energy consumption,
as we can understand from the BS power consumption model
reported in [4]:

P “ nf

ˆ
Pout

1

ηPA
` P0

˙
, (1)

where Pout “ ρPmax is the frequency band output power that
varies proportionally to ρ, 0 ď ρ ď 1, the traffic load in the
frequency band, ηPA is the efficiency of the power amplifier,
and P0 is the fixed amount of power consumed by processing
and additional equipment.

III. THE MODEL

Define the system state as pns, ne, nf q, where ns, 0 ď ns ď
t
νfr
rv

u is the number of active streaming services, ne P N is
the number of elastic services, and nf P t1, ¨ ¨ ¨ , νfu is the
number of active frequency bands. Let us assume that r is an
integer multiple of rv , and denote νs “ r{rv “ N .

A. The model for streaming services

Disregard for a moment the presence of elastic services
(this is possible since streaming services impact the elastic
services dynamics, but the opposite is not true). We assume
that streaming service requests arrive according to a Poisson
process with rate λs, that the durations of streaming services
are exponentially distributed with rate µs, and that dwell
times are exponentially distributed with rate µd. Under these
conditions, the dynamics of streaming services in a system
with νf “ 2 (a larger number of frequency bands can be
accounted for in our model with a linear increase in the

streaming services model state space and a cubic growth
of the solution complexity) and hysteresis of length ℓ can
be described with a continuous-time Markov chain (CTMC)
whose state transition rate diagram is presented in Fig. 1
(where the asterisk indicates the irrelevance, in this context, of
the number of active elastic services) and whose steady-state
probabilities can be computed as in Table I. In both Fig. 1 and
Table I we use the parameter µ “ µs ` µd.

From the steady-state probabilities in Table I the average
number of active streaming services Ns can be computed.

B. The model for elastic services
Assume that elastic service requests arrive according to an

independent Poisson process with rate λe and that the sizes
of elastic services are exponentially distributed. Under these
conditions, the joint dynamics of streaming and elastic services
can be described with a MA approach.

The residual data rate in the system, Rres, which is the
amount of data rate provided by the active frequency bands
that is not used by streaming services, i.e., the data rate that
can be used by elastic services, can be expressed as:

Rrespns, nf q “ nfr ´ nsrs . (2)

From Rrespns, nf q we can express the overall service rate
of elastic services as follows:

µepns, ne, nf q “ minpnere, Rrespns, nf qq{σe . (3)

Additionally, Rres allows us to compute Emax, which defines
the upper limit of ne beyond which the service rate of elastic
services in (3) only depends on the number of active streaming
services. Assuming νf “ 2, we have:

Emax “
S max

0ďnsď2N
pRrespns, nf qq
re

W
. (4)
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This is an important quantity, and determines the dimension of
the initial block of the matrix to be used in the MA solution.

In the case of single arrivals of elastic jobs, the infinitesimal
generator matrix Q is based on the definition of a quasi-
birth-and-death (QBD) block matrix in which each block is
square with size 2N ` ℓ ` 1. This specific structure allows
the application of a Matrix Geometrics (MG) approach [5]. In
this particular case, the vectors of steady-state probabilities
have an elegant matrix geometric form that allows us to
write the expected performance measures with a closed matrix
expression.

More generally, we are interested in the scenario of bursty
arrivals of elastic jobs that better reflects the real world traffic
characteristics. In our model, burstiness is modeled with batch
arrivals of elastic jobs with (nominal) average batch size bavg
and maximum batch size bmax. Notice that for single-server
queuing systems with constant service rate, it is well known
that batch arrivals severely impact the average response time.

Let us introduce the blocks of the resulting infinitesimal
generator matrix Q. We use x and y with x, y P t0, . . . , 2N `
ℓ ` 1u to denote the coordinates of an entry within the block.
Indexes from 0 to 2N are used to denote the states in which
the number of active frequency bands is the minimum required
for handling the services, whereas indexes from 2N ` 1 to
2N ` ℓ ` 1 denote the states corresponding to the hysteresis,
i.e., the number of active frequencies is higher than that strictly
required. This is depicted in Fig. 1. Each block is described,
through Iverson’s brackets, in Table III, with ppkq being the
probability of seeing a batch arrival with size k. The internal
block structure reflects the dynamics of streaming services, in
line with what is shown in Fig. 1. Instead, the dynamics of
elastic services are described by transitions among blocks.

Since the MA method requires all blocks except the first
one to only depend on the number of active elastic services,
it is necessary to collect the first Emax blocks in a macroblock
before applying the MA solution method.

The structure of the infinitesimal generator matrix Q is
presented in Table II, where the initial macroblock is in pink,
and bmax ą 1 in the case of batch arrivals.

Given the upper-Hessenberg structure of Q (see Table IV),
we can apply the following methodology, outlined in [6] and
briefly reported here for our particular case.

The solution begins with the computation of the minimal
nonnegative solution G of the following matrix equation:

a0Emax ` a1Emax `
bmaxÿ

i“1

ai2G
i`1 “ 0 .

This is solved iteratively using methods such as those de-
scribed in [7], [8]. These algorithms converge to G, a critical
component for calculating steady-state probabilities.

Let us define the following matrices:

S1
0 “ B00 ` S1

1G , S0 “ a1Emax ` S1G ,

S1
i “

bmaxÿ

k“i

B0kG
k´i , Si “

bmaxÿ

k“i

ak2G
k´i .

The stationary probability vector π0 is then derived by solving
the linear system:

π0S
1
0 “ 0 ,

with the normalization condition:

π0

˜
S0 `

bmaxÿ

i“1

pSi ´ S1
iq

¸ ˜
bmaxÿ

j“0

Sj

¸´1

1 “ 1 .

Once π0 is determined, the remaining stationary probability
vectors πi are computed recursively as follows:

πi “
˜
π0S

1
i `

i´1ÿ

k“1

πkSi´k

¸
p´S0q´1, @i ě 1 ,

The above method produces a matrix of joint probabilities
π, in which each row i gives the probability of being in a
state with j (index of the column) active streaming services
when there are i active elastic services. We can compute the
average number of active elastic services Ne by truncating the
following infinite summation:

Ne “
8ÿ

e“0

e
2N`ℓÿ

s“0

πpe, sq . (5)

IV. RESULTS

We present numerical results for a BS with νf “ 2
frequency bands, each carrying r “ 100 Mb/s, so that the
total data rate at the BS is R “ 200 Mb/s. Frequency bands are
dynamically activated according to the instantaneous number
of active video streaming services, using a hysteresis of length
ℓ, with ℓ taking values from 0 to 8.

The overall arrival rate of service requests λ determines
the BS load together with service durations, and it is often
used as the parameter versus which we plot results. In some
cases we split the overall arrival rate into streaming request
arrival rate λs “ 0.01λ and elastic request arrival rate λe “
0.99λ. In other cases we fix λs “ 0.05 and only vary λe.
The data rate required by each streaming service is rv “ 10
Mb/s and the average duration of streaming services is set to
τs “ 1

µs
“ 900 s (15 minutes). The average dimension of the

data to be transferred with elastic services is set to σe “ 5
Mb and the maximum data rate that can be used by an elastic
service instance is re “ 10 Mb/s (the same as for a streaming
service). The average dwell time in the cell is set to δ “ 300 s
(5 minutes). The distributions of streaming services durations,
of elastic services sizes and of dwell times are assumed to be
negative exponential.

The parameters of the BS power model in (1) are set as
in [4]. The maximum output power in each frequency band is
Pmax “ 240 W; the efficiency of the power amplifier is ηPA “
0.25; the fixed power consumption is P0 “ 324 W. The energy
cost of the switch-on and switch-off of the frequency bands is
computed as their fixed power consumption P0 multiplied by
the duration of the switch-on and switch-off transients, which
are taken to be Ton “ 5 s and Toff “ 1 s.

Parameter values are summarized in Table V.
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TABLE II: CTMC infinitesimal generator Q in block structure.

b00 a1
2 a2

2 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

a01 a11 a1
2 a2

2 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

0 a02 a12 a1
2 a2

2 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
...

...
... ¨ ¨ ¨

... 0
. . .

. . .
. . .

. . .
. . . ¨ ¨ ¨

...
...

...
...

...
...

... ¨ ¨ ¨

... 0
. . .

. . .
. . .

. . .
. . . ¨ ¨ ¨

...
...

...
...

...
...

... ¨ ¨ ¨

...
...

. . .
. . .

. . .
. . .

. . . ¨ ¨ ¨
...

...
. . .

...
...

...
... ¨ ¨ ¨

0 0 0 0 ¨ ¨ ¨ a0Emax a1Emax a1
2 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ abmax

2 0 0 0 ¨ ¨ ¨

0 0 0 0 0 ¨ ¨ ¨ a0Emax a1Emax a1
2 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ abmax

2 0 0 ¨ ¨ ¨

0 0 0 0 0 ¨ ¨ ¨ 0 a0Emax a1Emax a1
2 ¨ ¨ ¨ ¨ ¨ ¨ 0 abmax

2 0 ¨ ¨ ¨

0 0 0 0 0 ¨ ¨ ¨ 0 0 a0Emax a1Emax a1
2 ¨ ¨ ¨ ¨ ¨ ¨ 0 abmax

2 ¨ ¨ ¨

...
...

...
...

...
...

...
. . .

. . . a0Emax a1Emax a1
2 ¨ ¨ ¨ ¨ ¨ ¨ 0 abmax

2

...
...

...
...

...
...

...
. . .

. . .
. . .

. . .
. . . ¨ ¨ ¨ ¨ ¨ ¨

. . .
. . .

TABLE III: Blocks description of matrix Q presented in Table II

b00px, yq “ λsrx “ 2N ` ℓsry “ Ns ´ λerx “ ys ` λs

ˆ
p´1qrx “ ys ` ry “ x ` 1s

˙
rx ‰ 2Ns ` Nµ

ˆ
p´1qrx “ ys ` ry “ 2N ` ℓs

˙
rx “ Ns

` xµ

ˆ
p´1qrx “ ys ` ry “ x ´ 1s

˙
rx ‰ Nsrx ď 2Ns ` pN ´ ℓqµ

ˆ
p´1qrx “ ys ` ry “ N ´ ℓ ´ 1s

˙
rx “ 2N ` 1s

` px ´ N ´ ℓ ´ 1qµ

ˆ
p´1qrx “ ys ` ry “ x ´ 1s

˙
r2N ` 1 ă x ď 2N ` ℓ ` 1s

ak
2px, yq “ ppkqλe rx “ ys, 1 ď k ă bmax, a0kpx, yq “ µepx, kq rx “ ys, a1kpx, yq “ b00px, yq ` a0kpx, yq, 1 ď k ă Emax

TABLE IV: Explicit upper-Hessenberg structure of Q .

Q “

¨
˚̊
˚̊
˚̊
˝

B00 B01 B02 B03 ¨ ¨ ¨ ¨ ¨ ¨ B0bmax ¨ ¨ ¨
B10 a1Emax a12 a22 ¨ ¨ ¨ ¨ ¨ ¨ abmax´1

2 ¨ ¨ ¨
0 a0Emax a1Emax a12 ¨ ¨ ¨ ¨ ¨ ¨ a

bmax´2

2 ¨ ¨ ¨
0 0 a0Emax a1Emax ¨ ¨ ¨ ¨ ¨ ¨ a

bmax´3

2 ¨ ¨ ¨
...

. . .
. . .

. . .
. . . ¨ ¨ ¨ . . .

. . .

˛
‹‹‹‹‹‹‚

TABLE V: Parameters used in the derivation of numerical
results

Parameter Notation Value
Number of frequency bands νf 2

Frequency band data rate r 100 Mb/s
Video service data rate rv 10 Mb/s

Video service average duration τv 900 s
Maximum elastic service data rate re 10 Mb/s

Elastic service average size σe 5 Mb
Maximum number of elastic services 8

Average time in the cell δ 300 s
Fraction of elastic service arrivals pe 0.99
Fraction of video service arrivals ps 0.01

Video service arrival rate when fixed λs 0.05 s´1

Constant power consumption
of frequency band when on P0 0.324 kW

Maximum variable power consumption
of frequency band Pmax 0.24 kW

Efficiency of power amplifier ηPA 0.25
Time for frequency band switch-on Ton 5 s
Time for frequency band switch-off Toff 1 s

A. Performance of streaming services

We evaluate the performance of streaming services in terms
of loss probability, since the maximum number of streams
that can be accommodated by each frequency band is 10, and
the BS maximum is 20. The loss probability corresponds to a
request for the 21st streaming service, that cannot be accepted
because the BS data rate is fully allocated. Note that we do
not account for the possibility of losses during the switch-
on transient of the second frequency band (these would occur
if 2 or more streaming requests arrive during Ton when 9
streaming services are active).

Figure 2a reports the average number of active streaming
services and the streaming blocking probability versus the
overall arrival rate λ (consider that the streaming arrival rate is
λs “ 0.01λ). Around λ “ 5 s´1, i.e., λs “ 0.05 s´1, we have
a blocking probability close to 1% and an average number
of active streams around 11, thus a reasonable value for the
blocking probability and an average number of active streams
close to the border between the use of one or two frequency
bands. For these reasons, we choose λs “ 0.05 s´1 in the
following, when we focus on scenarios with a fixed value for
λs and variable λe.

Note that the performance of streaming services does not
depend on either the hysteresis value or the burstiness of the
elastic service arrival process. Even the results of the always-
on case (both frequency bands are always active) are identical.
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Fig. 2: Streaming services model: (a) average number of active services and dropping probability; (b) switch on/off frequency;
(c) overall energy consumption, vs. overall request arrival rate λ

B. Impact of the hysteresis on energy consumption

In Figs. 2b and 2c we plot respectively the average switch-
on and switch-off frequency and the average overall BS energy
consumption (average amount of energy consumed per unit
time) versus the overall arrival rate λ for different values
of the hysteresis length ℓ. As expected, increasing ℓ reduces
the frequency of switch-on/off on the one side, and increases
the overall BS energy consumption on the other. These two
aspects must be weighted together with the fact that increasing
ℓ implies a reduction of the average number and duration
of active elastic services, thanks to a larger amount of data
rate available to them. It is interesting to note that even
with hysteresis ℓ “ 8 the overall energy consumption is
significantly lower than in the always-on case.

In order to discuss the selection of the most appropriate
value of ℓ in the BS, we plot in Fig. 3 the average response
time of elastic services versus the hysteresis length ℓ (Fig. 3a),
the overall energy consumption versus ℓ (Fig. 3b), and their
normalized sum, versus ℓ. In all plots we consider three values
of λe, always assuming λs “ 0.05 s´1, and in the first two
plots we also show the values of the always-on case.

Fig. 3a shows that the average elastic service response
time decreases with ℓ, quickly approaching the value of the
always-on case, especially for lower loads. Fig. 3b shows that
the overall energy consumption grows with ℓ, but even at
high values of ℓ it remains well below the always-on case.
Both behaviours are expected, and they indicate the presence
of a trade-off: wider values of the hysteresis lead to better
performance, but also to higher energy consumption.

In order to understand how to optimize this trade-off, it
is necessary to define an appropriate metric that combines
average elastic service response time and overall energy con-
sumption. In Fig. 3c we plot the values of the following
function:

F pTe, E, ℓq “ Tepℓq ´ Tepℓmaxq
Tep0q ´ Tepℓmaxq ` Epℓq ´ Ep0q

Epℓmaxq ´ Ep0q , (6)

where Tepℓq is the average elastic service response time with
hysteresis ℓ, Epℓq is the overall energy consumption with

hysteresis ℓ, and ℓmax is the maximum value considered for ℓ.
The rationale for the function definition is to sum the normal-
ized decrement in elastic response time and the normalized
increment in energy consumption. The curves clearly show
that a minimum exists for ℓ “ 2.

Other metrics and other settings of the BS lead to different
values of the optimal ℓ, but this example shows that our
modeling approach can be instrumental for the choice of the
most effective hysteresis value.

C. Impact of the hysteresis on elastic services

Fig. 4 presents curves of (a) average duration of elastic
services and (b) average data rate available to elastic services,
both as a function of the overall arrival rate of service requests
(remember that the fraction of elastic services requests is 0.99).
Curves are indexed by the hysteresis length ℓ (taking values
from 0 to 8), also reporting the curve of the always-on case.

The average duration of active elastic services in Fig. 4a
does not depend on the hysteresis length for low and high ar-
rival rates. At low arrival rates, the probability of activating the
second frequency band is very low, and the hysteresis is hardly
ever entered. At high arrival rates, instead, the probability that
both frequency bands are active is very high, and the hysteresis
makes little difference. The difference becomes visible for
intermediate arrival rates, when the hysteresis works, and the
longer the hysteresis is, the higher the data rate for elastic
services is. When the data rate is high, elastic services are
completed fast, and their average duration is low.

It is worth observing that for arrival rate values around
λ “ 4 s´1, the hysteresis succeeds in reducing the average
completion time by almost one order of magnitude with
respect to the case of ℓ “ 0, progressively approaching the
always-on case.

The average data rate available to elastic services is pre-
sented in Fig. 4b, and is at the root of the explanations above.
At very low arrival rates, the always-on curve approaches
200 Mb/s that is the total data rate available at the BS. On
the contrary, the curves with hysteresis approach 100 Mb/s
because only one frequency band is active at very low load.
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Fig. 3: Average response time of elastic services (a); (b) overall energy consumption, and their normalized sum (c), vs. hysteresis
length ℓ for different arrival rates
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Fig. 4: Elastic services: (a) average duration, and (b) available data rate versus overall request arrival rate λ. (c): Average
duration vs. elastic jobs arrival rate λe, with λs “ 0.05

Since the fraction of elastic arrivals is 0.99, except for very
low values of λ, the 200 or 100 Mb/s are shared among a
reasonable number of elastic services. At very low values of
λ, the occasional elastic traffic is not capable of using all the
available data rate and only uses 10 Mb/s.

While the results we discussed so far are plotted as a
function of λ, hence for arrival rates of streaming and elastic
services that grow simultaneously, in Fig. 4c we plot the
average duration of elastic services as a function of λe, the
arrival rate of elastic services, for fixed value of the streaming
service arrival rate λs “ 0.05 s´1, and for hysteresis length
values ℓ “ 0, 4, 8. We observe that the stability region for
elastic services grows with the hysteresis length, as expected
due to the increased data rate available to elastic services, and
that with ℓ “ 8 performance is close to the always-on case.

For the sake of comparison, the red markers in Fig. 4 show,
in the case ℓ “ 4, what changes by letting re “ 100 Mb/s, i.e.,
by allowing one elastic service to use the entire data rate of
a frequency band. As expected, the average service duration
decreases at medium/low load only, when values for re “
10 Mb/s are already low (see Fig. 4a). No effect is visible in
Figs. 4b and 4c. In the former plot, the curves are not impacted
by re. In the latter, although differences exist, they are small
and impact only the part of the curve for small values of λe.

D. Impact of the elastic service request burstiness

In order to explore the effect of the burstiness of elastic
service request arrival processes we look at the difference
between the cases of individual and batch arrivals. We as-
sume a truncated geometric distribution for batch sizes, with
maximum batch size bmax, and nominal average batch size
bavg “ 1{rb so that the probability of batch of size i is:

ppiq “
#
rb p1 ´ rbqi´1

1 ď i ă bmax

p1 ´ rbqbmax´1
i “ bmax .

(7)

The analysis of the model in the case of batch arrivals
allows the investigation of the effect of the elastic service
request arrival process. In Fig. 5 we plot the average elastic
service duration versus the arrival rate of individual elastic
service requests (i.e., the arrival rate of batches divided by the
average batch size). We show curves for variable hysteresis
length (considering ℓ “ 2, 4, 8 as well as the always-on case)
and average batch size equal to 3, in Fig. 5a, and in Fig. 5b
for variable average batch size (equal to 1, 3, 6) with ℓ “ 4.
Batch sizes have a geometric distribution that is truncated at
bmax “ 12, as in (7).

The impact of the hysteresis length is similar to the case of
individual arrivals. We notice that, differently for what happens
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Fig. 5: Elastic: average service duration with batch arrivals

for queues with constant service rates, the burstiness caused by
batch arrivals does not cause severe performance degradation
in moderate or heavy load conditions. In order to understand
this phenomenon, we need to recall why queues with constant
service rates are subject to performance problems with bursty
arrivals. Even under very low load, the batch arriving at an
idle queue creates competition for the resources and, in turns,
it worsens the expected job response time. In our system,
we have two important features that mitigate this problem:
(i) in low load, the amount of bandwidth received by each
elastic job is bounded; hence, individual arrivals cannot take
full advantage of the lack of competition with other jobs. In
moderate/heavy load, the competition is mainly dominated by
the scarcity of bandwidth left by the streaming service, as well
as its fluctuation making the impact of the burstiness caused
by the presence of the batches almost negligible.

E. Decoupling the analysis of streaming and elastic traffic

The reader might wonder whether a simpler approach to
the analysis of the system could provide reasonable approx-
imations of the performance metrics. In particular, since the
main complexity in our model derives from the need to jointly
study the behavior of streaming and elastic services, we could
simplify the model by decoupling the analysis of the two traffic
types. In other words, we could first study streaming services,
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Fig. 6: Elastic: average service duration - comparison of results
of joint analysis and decoupled analysis

deriving the average unused data rate, and then use this average
to drive the analysis of elastic services. By so doing, the model
becomes extremely simple. Streaming services can be studied
with a CTMC comprising R

rs
` ℓ states, deriving the average

unused data rate ru, and elastic services can be studied with
a birth and death CTMC with birth rate equal to λe and death
rate equal to k re

σe
for all states with k active elastic services

such that kre ď ru, or to ru
σe

for states such that kre ą ru,
deriving the average number of active elastic services and from
it the average elastic service completion time. This approach
works for single arrivals and for any hysteresis value, and can
be extended to batch arrivals with a modification to the CTMC
of elastic services, which no longer retains its birth-and-death
structure.

The results that are obtained with the model presented in
the previous sections and this simpler model are compared
in Figs. 6a and 6b. Fig. 6a shows the average duration of
elastic services versus λe for variable values of ℓ, while
Fig. 6b shows the average duration elastic services versus λe

for variable values of the average batch size. We clearly see
that the simple model produces largely optimistic results with
respect to the model that jointly considers the two types of
traffic. Differences can be as large as (almost) two orders of
magnitude. The reason for this difference is that the simple
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model does not capture the interaction between streaming and
elastic services and its non-linear effects. In periods of little
data rate available to elastic traffic, their services proceed
slowly, while in periods of high available data rate services are
much quicker, but not all data rate can be exploited because
of the limit to the data rate usable by each elastic services and
to idle periods of elastic services.

In conclusion, the joint analysis of the two service types is
necessary, with the associated complexities, in order to obtain
accurate results.

V. PREVIOUS WORK

This work is an evolution of our performance studies of
radio access networks loaded with streaming and elastic traffic.
This is a relevant problem that has been investigated by several
research groups (see, for example, [9]–[11]). Our work started
by modeling one base station [3] and then we moved to
groups of base stations [12], always using queuing networks
as a modeling tool. Here, we add another dimension to our
investigation, looking at energy consumption, and in particular
at the trade-off between performance and energy. The energy
side of the problem exploits sleep modes, as frequently done
in green networking research [13], [14].

The modeling approaches that we used in this study are the
Matrix Geometric [7] and the Matrix Analytic [?], [1] methods
that have been instrumental for the analysis of a number of
complex systems (see, for example, [15], [16]).

The particular scenario that we investigate is rooted in the
network sharing concept, whose benefits in the domain of
energy saving were first quantified in [17], [18].

The idea of adaptive RF chain activation was previously
proposed in several works (see for example [19], [20]).

VI. CONCLUSIONS

In this paper we presented a model, which can be solved
with the Matrix Analytic method, for the investigation of the
trade-off between performance and energy consumption in a
base station or a group of base stations where frequency bands
are activated on demand according to traffic load. Users can
receive a wide range of services that are classified as either
streaming or elastic.

Numerical results show that the on-demand activation of
frequency bands leads to a significant reduction of energy
consumption, with limited impact on performance. With the
introduction of a hysteresis in the frequency band activa-
tion/deactivation process, oscillations of the number of active
frequency bands can be reduced, while preserving proper
trade-offs between performance and energy consumption. Fi-
nally, our results indicate that the interplay between streaming
and elastic traffic is complex and the separate analysis of
the performance of the two classes of services leads to very
optimistic results.

Future developments of this work include the extension to
multiple types of streaming services, as well as the incorpora-
tion in the model of the adaptability in the data rate required
by video streams.
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