
Mobility Aware Task Migration in Vehicular Edge
Computing Networks

Rim Sayegh∗†, Hela Marouane∗, Sahar Hoteit†§, Abdulhalim Dandoush‡
∗ ESME Research Lab, Ivry sur Seine, France

†Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes (L2S), Gif-sur-Yvette, France
‡University of Doha for Science and Technology (UDST), Doha, Qatar

§Institut Universitaire de France (IUF), France
rim.sayegh@centralesupelec.fr, hela.marouane@esme.fr, sahar.hoteit@centralesupelec.fr, abdulhalim.dandoush@udst.edu.qa

Abstract—With the emergence of autonomous vehicles and the
ever-increasing data reported, providing the required latency and
computational capabilities is becoming challenging. To address
this issue, multi-access edge computing (MEC) for 3GPP 5G
Cellular vehicles to everything (C-V2X) has been proposed
recently. In this paper, we propose the Mobility Aware Task
Migration (MATM) algorithm that strives the limitations of the
benchmark algorithms that the MEC orchestrator utilizes for
offloading tasks from vehicles. We provide a detailed simulation-
based study for End-to-End (E2E) delay by serving the safety
application as a function of different network densities. Firstly, we
propose an extension to the location service defined in the ETSI
MEC reference architecture; this extension enables the MEC
service to send a migration notification to the MEC orchestrator
to start the migration. Secondly, we introduce an enhancement
to the MEC orchestrator module to enable task migration during
vehicle mobility by selecting the most suitable MEC host with
the closest proximity to the vehicle. Additionally, we use the
Simu5G simulator to implement our scenario and conduct an
evaluation of task offloading algorithms, and a detailed E2E delay
analysis. Simulation results highlight the ability of our proposed
algorithm to minimize E2E delay while ensuring fairness in
resource allocation.

Index Terms—Multi-Access Edge Computing (MEC); Auto-
mated Vehicles (AV); Task Migration, Task offloading, End-to-
End (E2E) Delay; 5G Simulation

2025 36th International Teletraffic Congress (ITC 36)

I. INTRODUCTION

Intelligent Transport System (ITS) represents a complex
system that includes infrastructure (e.g., roads, traffic lights),
dynamic environmental conditions (e.g., weather and road
conditions), and connected vehicles interacting with these
elements. Different intelligent transport materials and software
are deployed onboard or at a central cloud to enable a new
generation of applications and services such as collaborative
auto-driving or safety applications (e.g., Intersection Colli-
sion Warning Service). Thus, ITS applications are feasible
thanks to exchanging predefined data messages via wireless
communications and processing them by small computing
nodes embedded in the vehicles or by a remote robust server
in a distant cloud when a large computing capacity is re-
quired. However, certain critical services require relatively
large computing and storage resources, which are larger than
the capacity of vehicles. Moreover, these services are sensitive
to delays, and forwarding the information to a remote central
cloud for processing may be inappropriate. To solve this
issue, Multi-Access Edge Computing (MEC) [1] provides

cloud computing capabilities and an Intelligent Transport (IT)
service environment, which is based on Network Function
Virtualization (NFV) and Software Defined Networks (SDN)
located at the edge of the 5G and beyond (5GB) networks near
the end users. 5GB network introduces several innovations,
from access to the core network side. The 5G New Radio
(NR) improves latency compared to 4G. This aspect makes
MEC adoption suitable for supporting vehicular services such
as in-vehicle information technology and cooperative driving.
The deployment of MEC close to the terminal allows low
latency and high service efficiency [2]. In addition, MEC also
has excellent computing and storage capabilities [3]. A key
research issue of 5GB is how to efficiently use the MEC
paradigm to optimize the offered Quality of Services (QoS).
The recent development of autonomous driving technologies
has increased the demand for services and resources at the
network edge. Inappropriate service of autonomous vehicles
on the network edge, due to resource allocation and scheduling
limitations, can lead to incorrect decisions and potentially seri-
ous accidents [4]. Therefore, evaluating MEC performance in
5GB networks is crucial. Moreover, optimizing MEC resource
allocation and communication segments for various services is
essential to ensure safety and efficiency.
The MEC architecture is structured into two levels: the MEC
system level and the MEC host level [5], as shown in Fig. 1.
The MEC system level provides a comprehensive overview
and management of MEC hosts, enabling efficient lifecy-
cle management of MEC applications, such as instantiation,
relocation, and termination, through the MEC orchestrator.
This orchestrator interacts with the User Application Lifecycle
Management Proxy (UALCMP) to handle application requests
and selects appropriate MEC hosts based on specific require-
ments like latency and resource availability. At the MEC host
level, resources, including CPU, RAM, and Disk, are allocated
to MEC applications within the virtualization infrastructure.
MEC services deployed on the MEC platform are accessed via
standard APIs and can be discovered through a service registry.
The MEC platform manager and virtualization infrastructure
manager (VIM) ensure efficient resource monitoring and man-
agement. However, with autonomous vehicles, a new challenge
arises because of unpredicted user mobility in the wireless
network. With the presence of user mobility [6], enhancing
low latency and smoothing user experience is far more than
simply pushing the cloud capabilities to the network edge.
To enhance the vehicle experience in MEC, the application
profiles of vehicles should be dynamically migrated across
edge nodes to keep up with their mobility. The challenge of
dynamically placing application profiles is not straightforward.
User-perceived latency depends on both communication and
computing delays. Simply placing each vehicle’s application978-3-948377-03-8/19/$31.00 ©2025 ITC

ITC Li
bra

ry

Fig. 1: MEC Architecture

profile at the closest MEC host might seem like a good
idea, but it can lead to some nodes becoming overloaded,
increasing computing delays. To address this issue, balancing
the load among MEC hosts and reducing task response time
while keeping the vehicle application close to the vehicle
during mobility is crucial. This paper highlights the challenges
of achieving efficient task migration while maintaining load
balancing between MEC hosts in vehicular edge computing
(VEC) environments. The contributions of our paper are:

1) We introduce the Proximity-Based Migration Notifica-
tion Extension for the MEC Location Service defined in
ETSI GS MEC 013 Location API [7] within the Simu5G
simulator [8]. The latter enables real MEC applications
to interact with 5G transport and services via ETSI-
compliant interfaces [5]. Where MEC host includes a
UPF module, enabling its placement anywhere in the
5G core network. This extension allows migration to
be handled based on vehicle proximity and sends these
notifications to the orchestrator. This mechanism allows
for faster migration decisions, eliminating the delay
caused by vehicle-initiated migration requests and their
acknowledgment process.

2) We propose the Mobility-aware Task Migration
(MATM) algorithm employed by the MEC orchestrator
to identify the best MEC hosts. This algorithm considers
the distance between the vehicle and the MEC hosts
then selects the nearest one while maintaining fairness
in resource allocation.

3) We evaluate the performance of the proposed MATM
algorithm through simulation experiments. The results
demonstrate the significant potential of our algorithm
in reducing the E2E delay compared to benchmark
algorithms.

The remainder of the paper is structured as follows. Section II
provides an overview of the related works. Section III presents
our system model and the details of the simulation scenarios,
respectively. Section IV presents our proposed application
migration algorithm. Section V discusses the obtained results.
Finally, Section VI concludes our work and highlights future
directions.

II. RELATED WORK

Mobile Edge Computing (MEC) reduces latency and re-
source constraints in vehicular networks, but rising data and
computational demands make fast service challenging. Opti-
mizing offloading and task migration strategies is essential for
maintaining low latency and efficient resource use, especially
in dynamic environments. Prior work has primarily focused on
optimizing task migration strategies and addressing mobility

challenges in dynamic environments. Gkatzikis et al. [9] lay
the foundation for task migration in Mobile Cloud Computing
(MCC). Their work explores centralized, server-initiated, and
task-initiated migration mechanisms, emphasizing trade-offs in
complexity, scalability, and system performance. In addition,
they highlight critical challenges, including user mobility,
workload uncertainty, and multi-tenancy effects, while ad-
vocating for mobility-aware migration strategies. The MCC
relies on distant cloud servers, leading to higher latency but
offering greater computational resources. In contrast, our work
focuses on the MEC paradigm, where MEC decentralizes
computing resources by placing them at the network edge
closer to users, thus reducing latency. Addressing mobility-
specific challenges, Taleb et al. [11] introduce the Follow-
Me Cloud (FMC) framework, which ensures service con-
tinuity via mobility-aware service migration decisions by
applying Markov-decision-process based algorithm for cost-
effective performance-optimized service migration decisions.
These studies mainly focus on offloading tasks to cloud
data centers to reduce the computation time. In contrast,
offloading tasks to the cloud increases the communication
delays which are unsuitable for sensitive applications such
as autonomous vehicles. Extending this, Machen et al. [10]
propose a layered migration framework tailored for MEC
environments, significantly reducing service downtime through
container-based solutions. They propose a Generic Layered
Migration framework using incremental file synchronization
that decreases the migration time compared to the virtual
machine technologies. They focus on optimizing the migration
process for applications running in MEC hosts; unlike our
work, it does not address when migration decisions should
be made. By using mobility-aware algorithms and proximity-
based triggers, we enhance the decision-making process.
Although edge servers reduce communication delays, their
limited resources compared to cloud data centers highlight
the growing need for efficient load-balancing techniques to
optimize resource utilization. In this context, Zhu et al. [12]
focus on load balancing, presenting the Load-aware Task Mi-
gration (LATM) algorithm that dynamically redistributes tasks
to optimize resource utilization. They work on general edge
computing environments with limited mobility considerations
while considering resource similarity and migration costs to
balance the load across edge nodes. In contrast, our work
focuses on vehicular MEC environments, addressing high
mobility and latency-sensitive applications while considering
vehicle proximity and fairness in MEC host selection, re-
ducing downtime, and ensuring low E2E delay. Ouyang et
al. [13] propose a mobility-aware dynamic service placement
framework for MEC, which leverages Lyapunov optimization
to minimize long-term user-perceived latency while adhering
to a predefined migration cost budget, addressing challenges
related to resource utilization and service continuity. While
their paper focuses on the general mobility-aware service
placement in various MEC scenarios, our work provides
proximity-based solutions tailored to vehicular mobility. Our
MATM algorithm also embeds location awareness and fairness
in host selection directly, making it more practical for real-
time vehicle applications. Ma et al. [14] focus on container
migration in static IoT edge networks, triggered by load
thresholds to optimize resource use. In contrast, our approach
uses real-time Proximity-Based Migration Notifications and
the MATM algorithm to dynamically trigger migration and
ensure fair load balancing. De Vita et al. [16] propose a
deep reinforcement learning-based approach for optimizing
application relocation in MEC-enabled LTE-A networks, lever-
aging SimuLTE [19] to demonstrate significant latency and
resource utilization improvements compared to traditional

ITC Li
bra

ry

TABLE I: Contrastive analysis of different works

Feature Ours [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]
Detailed E2E delay analysis ✓ – – – – – – – – – –
Fairness consideration ✓ – – – – – – – – – –
Focus on downtime (interruption time) ✓ ✓ ✓ ✓ – – ✓ ✓ – ✓ –
Integration of migration ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
More than two MEC hosts scenario ✓ – ✓ – ✓ ✓ ✓ – ✓ ✓ –
Use of real-world safety applications ✓ – – – – – – – – – –
Simu5G as simulator ✓ – – – – – – – – – ✓

heuristic policies. They focus on reducing delays but do not
explicitly optimize downtime during migration. Hathibelagal
et al. [15] experimentally compare three migration strategies
for MEC-assisted 5G-V2X applications. The three strategies
are discussed regarding their viability, the service downtime
recorded, and the amount of state preserved after migration,
with the user mobility emulated using the ETSI MEC Sandbox
[20]. However, their study does not discuss the reasons for
migration, focusing solely on the migration strategy instead
of the application/task offloading decision-making algorithm.
Also, they do not measure the E2E latency. In contrast,
our work puts emphasis on all the steps involved, from
migration detection to the pre-relocation strategy for seamless
application migration, and includes an application offloading
decision algorithm. Rezazadeh et al. [17] introduce MiGrror,
a synchronized mirroring approach for live migration in MEC
environments. Comparing the results obtained by traditional
methods, their proposal achieves a reduction in service down-
time, migration time, and packet loss. They use MobFogSim
[21] and SUMO [22] for performance evaluation. However,
their work does not take load balancing or resource usage at
the target MEC host into account during the migration decision
process. In contrast, our work ensures fairness in MEC host
selection; it considers resource availability, reduces E2E delay,
and enhances downtime compared to their work. Araujo et
al. [18] introduce a mobility-aware orchestration framework
supported by the RAVENS architecture for real-time mobility
data acquisition, leveraging Simu5G to demonstrate reductions
in Round-Trip Time (RTT) and resource consumption during
task offloading and service migration in dynamic vehicular
MEC scenarios. Their study involves only two MEC hosts,
simplifying the target MEC selection process and limiting
its evaluation to complex, real-world scenarios. This setup
does not account for diverse MEC infrastructures with varying
resource loads and network conditions. In contrast, our work
targets dynamic and high-mobility environments with multiple
MEC hosts, optimizing proximity and resource availability.
We evaluate performance across varying vehicle densities and
algorithms, integrating them into our migration workflow.
Unlike [18], we implement a realistic safety application with
high data rates to reflect real autonomous vehicular scenarios.
Table I shows a comparative analysis of the works related to
our proposed work.

III. SYSTEM MODEL

Consider a VEC environment with n vehicles denoted by
V = {v1, v2, . . . , vn}, and a set of h MEC hosts denoted
by M = {m1,m2, . . . ,mh}. The workflow of our scenario
is illustrated in Fig. 2. We implement the application called
“Safety app”, where the vehicles request the offloading of
sensing application from a centralized controller known as
the ”Orchestrator” [5]. Once the best MEC host is selected,
it offloads and processes the vehicle’s data and subsequently
sends the necessary responses, such as navigation instructions,
back to the vehicle. We define R = {r1, r2, r3} as the set of

Fig. 2: Architecture of the ”Safety App” in autonomous driving scenario.

TABLE II: Important notations

Notation Definition

V Vehicle set, V = {v1, v2, . . . , vn}, vi ∈ V
M MEC host set, M = {m1,m2, . . . ,mh},mj ∈ M
R set of resources, R = {r1, r2, r3}, rk ∈ R
W Weights set, W = {w1, w2, w3}, wk ∈ W
ts Time Slot s ∈ Z≥0

xts
ij Binary variable indicating whether vi is allocated to mj at ts

Ii Required Instruction Per Request (IPR) of vi
Cmax

j,k Maximum capacity of mj in terms of resource type rk
Rqi,rk Requirement of vi in terms of resource rk
Uts
j,rk

Utilisation rate of resource rk in mj at ts
Loadtsj Load of MEC host mj at ts
F ts Jain’s Fairness Index in the system at ts

resources: CPU, RAM, and Disk, respectively; k is the index
of the resource type rk. Each MEC (mj ∈M) is characterized
by a maximum CPU, RAM, and Disk capacity, denoted by
Cmax

j,k . Similarly, Rqi,rk represents the resource requirements
of the resource type rk for a given vehicle vi. Table II shows
the notations used throughout our paper.

A. Autonomous Driving Service for Safety control
We implement an autonomous vehicle application, referred

to as the “Safety application” within a MEC environment, as
illustrated in Fig. 2. In our scenario, the MEC host offloads
the vehicle’s data (e.g. sensed data) and processes these
data, then sends necessary responses back to the vehicle,
such as alerts, navigation instructions, and acknowledgments.
This real-time processing is crucial for ensuring autonomous
driving systems’ safety and smooth operation. We consider a
highway environment where autonomous vehicles are served
by the MEC hosts who are responsible for assisting them.
Network coverage is provided by base stations (i.e., gNodeB)
at the roadside. In the case of multiple MECs in the simulation,
we assume that each base station owns its MEC system and
complies with the European Telecommunications Standards
Institute (ETSI) MEC framework [1]. Our safety application

ITC Li
bra

ry

Fig. 3: Data handling sequence between vehicle and MEC Host.

is realized to be run on both the vehicle (UESafetyApp) and
MEC (MECSafetyApp) sides. Each User Equipment (UE)
application is installed on the vehicle, whereas the MEC
application will be on-boarded to all MEC systems. Vehicle
applications have CPU, RAM, and Disk requirements that
must be allocated to the MEC host. The number of instructions
required to execute each vehicle’s packet is determined using
the Instruction Per Request (IPR) parameter Ii [23], [24] for
a vehicle vi, which follows an exponential distribution with a
rate parameter λ. To simulate a real-time use case, we generate
packets following the Poisson process where the inter-arrival
rate follows an exponential distribution as considered in [25].
The Poisson process accurately represents independent random
events over time, a common feature in network traffic. This
approach ensures unpredictable packet arrival times based on
a statistically sound distribution, providing a realistic view of
network load. Also, the payload size of each packet on the
uplink direction follows an exponential random distribution
[23]. For the payload size on the downlink, we fix the data
size to a given value compatible with most remote sensing
data in autonomous driving [23]. To ensure a good Quality-
of-Service (QoS) characterized by low E2E delay for vehicles
with unpredictable movement patterns, each vehicle’s appli-
cation profile must be dynamically migrated across various
edge nodes to align with their mobility. We define the total
simulation time as T, discretized by a fixed time interval of
∆ts = 11µs, corresponding to the subscription interval used
by the location service to track the vehicle’s location. Hence
for each time slot ts where s ∈ Z≥0, a binary variable, xts

ij , is
used to represent the dynamic placement decision. Specifically,
xts
ij = 1 indicates that the application of vehicle vi ∈ V

is hosted at MEC host mj ∈ M during time slot ts, and
xts
ij = 0 otherwise. Importantly, since each vehicle is served

by only one MEC host at any given time slot ts, the following
constraints govern the application placement decisions xts

ij :

h∑
j=1

xts
ij = 1, ∀i, ts. (1)

xts
ij ∈ {0, 1}, ∀i, j, ts. (2)

B. Evaluation Metrics
1) End-to-End Delay: We define the E2E delay as the sum

of the “initDelay” and the Total Response Time (TRT), as
shown in Eq.(1). Fig. 3 describes the communication sequence
diagram between a vehicle and a MEC host. We define the
“initDelay” as the sum of 3 sub delays as follows: (i) the
time spent to deliver the allocation request from the vehicle to
the orchestrator, (ii) the time to allocate the request to the best
MEC host according to the task offloading policy, and (iii) the
time spent receiving the acknowledgment with the address of
the best allocated MEC host to the vehicle. The “initDelay”
corresponds to the decision-making time, it is represented by
the steps one to six in Fig. 3. We define in Eq. (2) the “Total
Response Time” (TRT) as the time between the transmission
of sensed data as a data packet from the vehicle to MEC and
the reception of response data at the vehicle after data executed
and processed by the MEC.

E2EDelay = initDelay + TRT (1)

TRT =ULPacketDelay +QueueingDelay

+ ProcessingDelay +DLPacketDelay

+ InterruptionT ime

(2)

The uplink delay denoted by “ULPacketDelay” is the time
interval between generating a packet at the vehicle and its
reception by the MEC Host. The queueing delay, “Queue-
ingDelay”, refers to the duration a data packet waits in
a queue before being processed by the MEC host, where
the queueing system is M/M/1 queue. The time taken by
each packet within a MEC application follows an exponential
distribution. The processing delay, “ProcessingDelay”, refers
to the duration the MEC host takes to execute or process a task
or data packet after being dequeued. The resources required
by each vehicle’s request are allocated on the MEC host in
fair sharing mode [26], whereby active MEC applications
proportionally share all available computing resources based
on their requested rates, potentially receiving more capacity
than specified when contention is low [26]. The downlink
packet delay, “DLPacketDelay”, is the duration from when
the MEC sends the response to its reception at the vehicle.
We add the interruption time to the TRT in case of migration.
It is the downtime or the period during which the vehicle is
not connected to the MEC application on the initial MEC host,
and the connection with the new MEC host has not yet been
established. As the migration starts before the handover starts,
the orchestrator, as a centralized agent, starts the relocation
after being notified by the location service. This means that the
migration is doing in a mode “make-before-break”. Therefore,
the migration time does not affect the TRT.

2) Utilization Rate: To evaluate the load balance of task
offloading strategies, the utilization rate of a specific resource
type rk [12] for mj is defined by:

U ts
j,rk

=

∑n
i=1 x

ts
ij ×Rqi,rk

Cmax
j,k

(3)

where j is the index of mj , i is the index of vi, rk is the type
of resource with index k and ts is the time slot.

3) Load of MEC host: The Load of the MEC host mj
depends on accumulating the resource requirements of vehicle
applications executing on it [27], it is defined by:

Loadts
j =

3∑
k=1

ωk × U ts
j,rk

(4)

ITC Li
bra

ry

where j is the index of mj , ts is the time slot, ωk is the weight
of resource type rk.

4) Jain’s Fairness Index: It is used to measure the fairness
of resource allocation among multiple entities [28]:

F ts =

(∑h
j=1 Load

ts
j

)2

h
∑h

j=1(Load
ts
j)2

(5)

where j is the index for mj , ts is the time slot, h is the number
of MEC hosts in the environment. It ranges from 0 to 1, where
a value of 1 indicates perfect fairness (equal distribution), and
lower values signify increased disparity.

Fig. 4: Simulation Architecture.

IV. THE PROPOSED ALGORITHM

In this section, we introduce the Mobility-Aware Task Mi-
gration (MATM) algorithm, which comprises the Proximity-
Based Migration Notification and the Distance-Load Trade-Off
(DLTO) algorithm.

A. Proximity-Based Migration Notification (PMN)
Migration in Vehicle Edge Computing (VEC) is essential to

ensure seamless service delivery during vehicular mobility. We
propose this dynamic approach after detecting the limitations
of static benchmark algorithms [29], which increase latency
and affect service continuity during mobility. This section
describes our proposed migration workflow, emphasizing min-
imal downtime and effective resource management.
Our proposed migration workflow has been implemented in
Simu5G [8], a 5G network simulator based on OMNeT++
[30], as an extension for the Orchestrator mechanism and
the MEC Location Service defined in ETSI GS MEC 013
Location API [7]. These extensions enable the orchestrator to
manage application migration dynamically and proactively in
a pre-relocation mode, leveraging real-time location updates
provided by the Location Service at each subscription interval
time. The extended modules in the MEC architecture are
mentioned in Fig. 4. The migration workflow is described in
Fig. 5. The migration workflow involves four key components:
the MEC App, MEC Service, Orchestrator, and Vehicle. Each
component plays a distinct role in ensuring efficient pre-copy
application migration across MEC hosts. The MEC application

(app) handles the application logic and communicates with
the vehicle. MEC Service tracks vehicle locations and makes
migration notifications. The orchestrator coordinates the mi-
gration process and selects the target MEC host.

Fig. 5: Application migration procedure in ETSI-MEC in Simu5G.

1) Location Service Rules: The Location Service is
a MEC service implemented in Simu5G, aligned with
the ETSI GS MEC 013 Location API specifications [7],
[8]. Its primary functions include obtaining the current
locations of User Equipment (UE) and Base Stations
(BSs) and enabling a circular notification subscription. Our
extension enhances the Location Service by making migration
notifications subscriptions and notifying the orchestrator to
initiate migration. This decision-making process leverages
the notification subscription to track vehicle locations at
each subscription interval. Based on the location and the
vehicle’s direction, the subscription informs the Location
Service about the corresponding vehicle ID. The Location
Service then proactively sends a migration notification to the
orchestrator, which employs the Distance-Load Trade-Off
(DLTO) migration algorithm to handle relocation. This
extension enhances the functionality of the Location Service
and the orchestrator by eliminating the need for vehicle
migration requests. In addition, throughout the pre-relocation
phase, the source MEC host continues to serve the vehicle
without any interruptions. Instead, the proactive monitoring
mechanism ensures that migration is triggered automatically
when a vehicle should be migrated, reducing latency and
improving system responsiveness.

2) Orchestrator Rules: When the orchestrator receives a
migration notification from the Location Service, it retrieves
the vehicle’s application description and related information
from an internal map. This approach eliminates the need
of additional information from the vehicle, ensuring efficient
handling. Next, the orchestrator generates a context application
message containing essential details, including the application
descriptor ID, the initial request ID, and the device application
ID (which corresponds to the app requested by the vehicle
during the initial simulation phase). This information is used to
carry out the application migration. The orchestrator possesses
the historical information about all vehicles like application
ID, the MEC hostname, the reference to the MEC host where
the MEC application has been deployed, the connection to

ITC Li
bra

ry

VIM which handles the availability of virtualized resources on
the MEC host, and vehicle address and port for downstream
using UDP sockets, etc. Subsequently, the orchestrator invokes
the relocation function, where it accesses the application
descriptor and employs the Distance-Load Trade-Off (DLTO)
migration algorithm to select a suitable new MEC host. During
this process, the orchestrator initiates a pre-copy migration,
transferring a copy of the application to the target MEC host
while ensuring the vehicle remains connected to the original
MEC host. Communication with the original host continues
until the vehicle receives an acknowledgment from the or-
chestrator confirming the migration’s success. This acknowl-
edgment includes the address and port details of the target
MEC Host, allowing the vehicle to transition seamlessly. This
approach minimizes downtime and ensures service continuity.
After the vehicle successfully switches to the target MEC
host, the orchestrator terminates the application instance on
the initial MEC host, completing the migration process.

Algorithm 1: DLTO migration algorithm
Data: mecList, appDesc, vehicle
Result: bestHost
bestHost← nullptr;
maxScore← −1;
minDistance←∞;
for <mec in mecList> do

Check Resources availability(CPU ,RAM ,Disk)
if isAllocable then

Check Service availability
if Service available then

Score =
0.5× CPU + 0.3×RAM + 0.2×Disk

Sort mecList by Score in descending order
L = length(mecList)
bestMecList = mecList[:L2]
for <mec in bestmecList> do

Calculate Distance between vehicle and mec
if Distance < minDistance then

bestHost = mec

if bestHost = nullptr then
Add vehicle to a queue

return bestHost

B. Distance-Load Trade-Off (DLTO) algorithm
Our DLTO Algorithm is designed to optimize the selection

of MEC hosts. The algorithm considers the computational load
of MEC hosts and their physical proximity to the vehicle,
ensuring a balance between resource availability and reducing
communication latency. The algorithm starts by checking all
the MEC hosts to find those that can allocate enough resources
for the application. The evaluation reviews CPU, RAM, and
disk needs as mentioned in the application descriptor. Then, it
checks the availability of the required location service. If the
location Service is available, it calculates a composite score
for each valid candidate based on resource availability. The
composite score will consider CPU, RAM, and disk capacity
with weights of 0.5, 0.3, and 0.2, respectively. Based on
the score calculated for each MEC host, the MEC host list
is sorted by score in descending order. Then, the algorithm
filters the MEC hosts to keep only half of the MEC hosts

with the highest composite score on the list. The algorithm
selects the top candidates as potential winners and then checks
their physical proximity by calculating the Euclidean distance
between the vehicle’s position and the MEC hosts. This step
identifies the nearest MEC host to the vehicle and minimizes
the communication delay.
The DLTO Algorithm optimizes resource utilization by as-
signing a score based on the availability of resources to handle
the application workload on potential MEC hosts. It prioritizes
MEC hosts with greater scores before selecting the one closest
to the vehicle. In addition, proximity as a decision criterion
minimizes the delay between the vehicle and the MEC host,
improving the quality of service for latency-sensitive applica-
tions. It enables proactive decision-making, dynamically eval-
uating available MEC hosts and vehicle locations in real-time,
enabling seamless and adaptive migration. Overall, the DLTO
migration algorithm combines computational efficiency and
spatial optimization, making it well-suited for dynamic VEC
environments where mobility and low-latency requirements are
critical. It not only ensures reliable application performance
but also optimizes MEC infrastructure usage, paving the way
for scalable and adaptive edge computing systems. In case the
allocation fails or there is no MEC host available, the vehicle
request is queued until it is allocated by an available MEC
host. For reproducibility, we make the code of our proposed
algorithm publicly available in [31].

TABLE III: Simulation Parameters

Parameter Name Value

h 3 MEC hosts
n [10, 50] vehicles
W {0.5, 0.3, 0.2}
Carrier Frequency 2 GHz
Numerology index 2
Resource Blocks 50
Handover Latency 0.005s
Vehicle Speed uniform(80, 130) km/h
Simulation Time 200 s
Uplink rate (msg/s) Pois(5), Pois(0.5) [23]
Uplink payload (Bytes) Exp(40000) [23]
Downlink payload (Bytes) 313 [23]
Downlink Bandwidth (MBit/s) 0.05
Instruction Per Request (IPR) Exp(500) [23]
Min CPU Required (MIPS) 165130 [23]
Processing Speed (MIPS) 4712460
Road Map Length 4 Km
gNodeBs inter distance 2 Km
Downlink rate (msg/s) 20
Subscription interval 11µs

V. SIMULATION AND PERFORMANCE EVALUATION

In this section, to validate the effectiveness of our pro-
posed method, we evaluate the performance of the MATM
methodology in a simulation environment and compare it
with benchmark algorithms implemented in simu5G [8] and
analyzed in [29].

A. Simulation environment and Parameters
In this study, we use the Simu5G [8] open-source simulator,

which is based on the OMNet++ [30] framework for the packet
level simulation and integrates the INET [32] framework for
the network protocol stack. The edge environment considered
in this experiment comprises h MEC hosts and n vehicles, the
number of MEC hosts is set in the simulation to h = 3, and the
number of vehicles n varies between 10 to 50 vehicles. Each
vehicle has a speed selected uniformly between 80 to 130 km

ITC Li
bra

ry

per hour, and the simulation time is set to 200s. Each MEC
host has a CPU, RAM, and Disk capacity. The weights ωk of
the different resource types are set to 0.5, 0.3, and 0.2 for CPU,
RAM, and Disk resources, respectively. The vehicles move 4
km along a single-lane highway and reach a density of around
15 vehicles per km. The traffic flow reaches 900 vehicles
per hour. Each vehicle runs the “UESafetyApp”. Besides, it
considers diverse data rate patterns in a realistic environment;
we choose two kinds of uplink data rates: about 30% with
the high data rate and the remaining vehicles with a small
data rate. Every experiment is repeated 30 times with different
seeds. Table III summarizes the main simulation parameters.

B. Proposed algorithms
1) MATM algorithm, as described in section IV by the

combination of PMN and DLTO.
2) DLTO algorithm, is the MATM without migration as

described in section IV.
3) First-Fit with migration (FFM) enables migration by

using proximity-based migration notifications (PMN) to
detect the need and relocates vehicle apps with the First-
Fit algorithm.

4) Best-Fit with migration (BFM) uses proximity-based
migration notifications (PMN) to detect when migration
is needed and relocates vehicles using the Best-Fit
algorithm.

C. Benchmark Algorithms
We consider two approaches as benchmarks to evaluate our

algorithm. They are implemented in Simu5G and described as
follows:

1) First-Fit (FF) corresponds to ”MEC-Service Based”
[26] selects the first available MEC host meeting the
application’s resource and service requirements. This in-
volves choosing the first host with the necessary capacity
and services to support the MEC application.

2) Best-Fit (BF) corresponds to “Available-Resource
Based” [26] [33] evaluates all MEC hosts in the list to
find the one with the necessary resources and the highest
CPU speed.

D. Results and Discussion
To evaluate our proposed approach, we analyze the different

components of E2E delay for different numbers of vehicles.
The proposed approach refers to the (MATM) algorithm that
comprises the Proximity-Based Migration Notification (PMN)
and the Distance-Load Trade-Off (DLTO) algorithm. We start
with evaluating the DLTO algorithm with the benchmark
algorithms mentioned in the previous section.

1) DLTO algorithm Assessment: In this experiment, illus-
trated in Fig. 6, we compare the effectiveness of the DLTO
algorithm without the PMN assigned for migration. We should
remember that the DLTO is an algorithm applied by the
orchestrator to select a MEC host for task/application offload-
ing by ensuring Distance-Load trade-off. The “initDelay” in
Fig. 6a reflects the independence between the algorithm used
and the initiation period, attributed to the similarity in the
complexity of the algorithms evaluated in this study. As a
result, shown Fig. 6b while the DLTO algorithm outperforms
the BF and FF algorithms, its advantage is always present
even with a higher number of vehicles, but the percentage of
delay reduction is reduced with a high number of vehicles
from 14% with 10 vehicles to 2% with 50 vehicles. It is
worth mentioning the effectiveness of DLTO by decreasing
the “ULPacketDelay” as shown in Fig. 6c and the ability to
balance the load to have a tendency near to the BF algorithm

(a) Average initDelay for DLTO. (b) Average TRT for DLTO.

(c) Average ULPacketDelay for
DLTO.

(d) Average QueueingDelay for
DLTO.

(e) Average ProcessingDelay for
DLTO.

(f) Average DLPacketDelay for
DLTO.

Fig. 6: Evaluation of E2E Delay components for DLTO
algorithm without Migration.

that offload applications in balancing way, this is present
in the Fig. 6d and Fig. 6e refer to “QueueingDelay” and
“ProcessingDelay” respectively. Our algorithm selects the
MEC host based on availability, and distance to MEC hosts
during mobility, this reflects the tendency to have a Fairness
and distance trade-off, which explains the decrease in the
“ULPacketDelay” and the behavior of “QueueingDelay” and
“ProcessingDelay”. In contrast, Fig. 6f illustrates the relative
stability of “DLPacketDelay” regardless of the algorithm used
and the number of vehicles on the road, attributed to the
small size of downlink packets sent from the MEC host to the
vehicles. In this stage, with the reduction of the performance
for a higher number of vehicles, we resort to extending the
DLTO with the migration approach.

2) MATM algorithm Assessment: In this experiment, we
apply the proximity-based migration notification (PMN) com-
bined to the DLTO algorithm to have the MATM algorithm.
We compare the performance of the MATM algorithm with
both BFM and FFM algorithms. Fig. 7 presents the different
E2E delay components for the different algorithms. As shown
in Fig. 7b, the TRT increases with a growing number of
vehicles, given a fixed number of MEC hosts. This trend is
expected as a higher vehicle density demands more MEC re-
sources. Compared to the other algorithms detailed in Section
V, the MATM algorithm demonstrates a significant advantage,
achieving an average TRT reduction of approximately 15%.
This reduction was achieved with an interruption time (down-
time) of around 3 ms less than the application downtime in
previous works from the literature [15] [17]. This downtime
reduction is due to the efficiency of our migration implemen-
tation, where the orchestrator proactively selects a new MEC
host and allocates the vehicle application to it in pre-relocation

ITC Li
bra

ry

(a) Average initDelay for MATM. (b) Average TRT for MATM.

(c) Average ULPacketDelay for
MATM.

(d) Average QueueingDelay for
MATM.

(e) Average ProcessingDelay for
MATM.

(f) Average DLPacketDelay for
MATM.

Fig. 7: Evaluation of E2E Delay components for MATM.

mode, where the source MEC host continues to serve the
vehicle without any interruptions during the migration time.
It is worth mentioning that the migration time (i.e., the time
required to complete the migration process) is in the range
of 10s and 15s, which is compatible with the literature [34].
This migration time is back end-stage during migration, which
means the migration occurs while the source MEC host still
serves the vehicle. In addition, Fig. 7b highlights the reduction
in TRT achieved by the MATM algorithm relative to BFM and
FFM. The percentage of reduction grows with the number
of vehicles, underscoring the effectiveness of the MATM
algorithm in managing higher vehicle flows. This improvement
is primarily attributed to the algorithm’s ability to optimize
application migration, which becomes increasingly critical as
vehicle density rises.
As shown in Fig. 7c, the MATM algorithm achieves the lowest
delay among all approaches. This superior performance can
be attributed to its ability to migrate vehicle applications to
MEC hosts near the vehicles during mobility. This proximity
significantly improves the “ULPacketDelay”, as the algorithm
described in Section IV prioritizes selecting MEC hosts with
high capabilities and closer proximity to the vehicles. In con-
trast, the BFM algorithm combines the best-fit strategy with
Proximity-Based Migration Notification (PMN) to enhance
its performance. However, this approach focuses solely on
load balancing across MEC hosts without considering the
vehicle’s distance or mobility patterns. Fig. 7d and Fig. 7e
present the evaluation of “Processing Delay” and “Queueing
Delay” for the MATM algorithm compared with the BFM
and FFM under varying vehicle loads. The FFM algorithm
shows the highest “ProcessingDelay” and “QueueingDelay”
as the number of vehicles increases, likely due to unbalanced
allocation distribution, where the FFM algorithm allocates

vehicles in the first MEC host available, which makes the
first MEC host available overloaded. In contrast, the BFM
algorithm maintains relatively lower “processingDelay” and
“QueueingDelay” due to their well-load allocation strategies,
which do not overload a specific MEC host. The MATM algo-
rithm consistently exhibits a “ProcessingDelay” and “Queue-
ingDelay” comparable to that of the BFM algorithms while
outperforming the FFM algorithm. This improvement is due
to the DLTO migration algorithm’s ability to ensure the
trade-off between load distribution and proximity. It aims to
achieve effective load balancing, similar to the BFM algorithm
while ensuring that application allocation remains close to the
vehicle during mobility.
Fig. 7f and Fig. 7a illustrate the evaluation of “DLPacket-
Delay” and “initDelay” respectively across BBM and FFM
algorithms. The results indicate that both delays remain un-
affected by the choice of algorithm. The stability of “DL-
PacketDelay” is primarily due to the small size of the packets
transmitted from the MEC to the vehicles. Fig. 7a shows that
the “initDelay” increases with the number of vehicles due to
the congestion in requesting initiation from vehicles simul-
taneously. In this experiment, we suppose that the vehicles
ask for the allocation at the same time at the beginning of
the simulations. The two Fig. 6b and Fig. 7b compare the
MATM algorithm (with migration) and the DLTO algorithm
(without migration) in terms of average TRT across varying
vehicle counts. With more vehicles, MATM achieves lower
TRT (24.5 ms) compared to DLTO (27 ms), demonstrating the
effectiveness of migration. Our MATM algorithm consistently
outperforms DLTO, particularly under higher loads, improv-
ing system responsiveness in MEC environments. Practically
speaking, our proposed solutions are ideal for use as xApps
at near-real RAN Intelligent Controllers (i.e. in the timeframe
between 10 ms and 1 s) in the Open-RAN architecture for 5G
networks and beyond [35].

Fig. 8: Fairness Index over the time.

3) Fairness Analysis: The graph in Fig. 8 illustrates the
fairness index over time for different algorithms in a two-lane
vehicle mobility scenario. The main plot shows that MATM
and BFM consistently achieve a fairness index close to 1,
demonstrating their high effectiveness in ensuring a good level
of fairness across the MEC hosts. The results of these two
algorithms are the closest to the BF algorithm, which has
the proportional distribution of vehicles between the MEC
hosts, which ensures the optimal fairness index. On the other
hand, we can see that DLTO performs moderately, maintaining
stable fairness indices between 0.9 and 1. Comparing DLTO
to MATM, we notice that MATM increases the fairness by
taking into consideration both the load and the distance,
where the DLTO maintains the same allocation throughout
the simulation time, as MEC applications in MEC hosts do
not track vehicle mobility. This causes some MEC hosts to

ITC Li
bra

ry

be overloaded compared to others. Regarding both BFM, we
notice that the migration decreases a little bit in the fairness
index compared with BF algorithm. In contrast, FF and FFM
exhibit the lowest fairness indices, with values stabilizing
around 0.65 and 0.67, respectively. Overall, we can emphasize
the significant advantage of algorithms like MATM and BFM
in ensuring a good level fairness, while the performance of
FF and FFM indicates that more optimization is required in
order improve their equity in resource allocation. The results
also highlight the efficiency and effectiveness of both MATM
and DLTO algorithms, particularly in environments where low
delay and fairness are critical.

VI. CONCLUSION AND FUTURE WORK

In this paper, we design a novel mobility-aware task migra-
tion algorithm to achieve a desirable balance between faster
serving for delay-sensitive applications and fairness of re-
source utilization. This work is motivated by the rapid demand
for autonomous vehicles, and it is becoming increasingly
challenging for the edge nodes to handle a safety application in
complex traffic conditions. To do so, our methodology has two
pillars, the proximity-based migration notification (PMN) and
the distance-load trade-off (DLTO) algorithm. We implement
the PMN in Simu5G as an extension of the location service
and the orchestrator rules to enable the migration notification
by tracking the mobility information of the vehicles ensur-
ing real-time decision-making. It is a proactive solution that
decreases the interruption time by making the orchestrator pre-
relocate the vehicles’ applications using our DLTO algorithm.
Simulation results demonstrate that our proposed methodology
effectively reduces E2E delay by up to 15%, compared to
other approaches from the state of the art while achieving a
good level of fairness. As a future work, we aim to extend the
MATM algorithm to consider additional QoS constraints and
to further improve load balancing through machine learning
techniques. We will evaluate the performance in diverse sce-
narios with varying traffic densities, heterogeneous edge node
capabilities, and different network topologies. In addition,
other important metrics for delay-sensitive data processing
in 5G-IoT settings, like age-of-information (AoI), will be
considered.

ACKNOWLEDGMENT

This work was partially funded by the ANR HEIDIS
(https://heidis.roc.cnam.fr/; ANR-21-CE25-0019) project.

REFERENCES

[1] ETSI Multi-access Edge Computing (MEC).
https://www.etsi.org/technologies/multi-access-edge-computing.

[2] A. A. Kherani, G. Shukla, S. Sanadhya, N. Vasudev, M. Ahmed,
A. S. Patel, R. Mehrotra, B. Lall, H. Saran, M. Vutukuru, A. Singh,
S. Seshasayee, V. R. Viswakumar, and K. Loganathan. Development of
mec system for indigenous 5g test-bed. In 2021 International Conference
on COMmunication Systems NETworkS (COMSNETS), 2021.

[3] L. Hou, M. A. Gregory, and S. Li. A survey of multi-access edge
computing and vehicular networking. IEEE Access, 10:123436–123451,
2022.

[4] S. Hakak, T.R. Gadekallu, P. K. R. Maddikunta, S. Koppu, M. Parimala,
C. d. Alwis, and M. Liyanage. Autonomous vehicles in 5g and beyond:
a survey. Vehicular Communications, 39:100551, 2023.

[5] ETSI MEC model in Simu5G. https://simu5g.org/users-guide/mec.
[6] X. Dionysis, P. Nikos, M. Lazaros, and V. Christos. Mobility man-

agement for femtocells in lte-advanced: Key aspects and survey of
handover decision algorithms. IEEE Communications Surveys Tutorials,
16(1):64–91, 2014.

[7] ETSI GS MEC 013: Multi-access Edge Computing (MEC); Location
API. https://forge.etsi.org/rep/mec/gs013-location-api.

[8] Simu5g. https://github.com/Unipisa/Simu5G, 2024.

[9] L. Gkatzikis and I. Koutsopoulos. Migrate or not? exploiting dynamic
task migration in mobile cloud computing systems. IEEE Wireless
Communications, 20(3):24–32, 2013.

[10] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis. Live ser-
vice migration in mobile edge clouds. IEEE Wireless Communications,
25(1):140–147, 2018.

[11] T. Taleb, A. Ksentini, and P. A Frangoudis. Follow-me cloud: When
cloud services follow mobile users. IEEE Transactions on Cloud
Computing, 7(2):369–382, 2019.

[12] X. Zhu, W. Yao, and W. Wang. Load-aware task migration algorithm
toward adaptive load balancing in edge computing. Future Generation
Computer Systems, 157:303–312, 2024.

[13] T. Ouyang, Z. Zhou, and X. Chen. Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing. IEEE
Journal on Selected Areas in Communications, 36(10):2333–2345, 2018.

[14] Z. Ma, S. Shao, S. Guo, Z. Wang, F. Qi, and A. Xiong. Container
migration mechanism for load balancing in edge network under power
internet of things. IEEE Access, 8:118405–118416, 2020.

[15] M. A. Hathibelagal, R. G. Garroppo, and G. Nencioni. Experimental
comparison of migration strategies for mec-assisted 5g-v2x applications.
Computer Communications, 197:1–11, 2023.

[16] F. De Vita, G. Nardini, A. Virdis, D. Bruneo, A. Puliafito, and G. Stea.
Using deep reinforcement learning for application relocation in multi-
access edge computing. IEEE Communications Standards Magazine,
3(3):71–78, 2019.

[17] A. Rezazadeh, D. Abednezhad, and H. Lutfiyya. Migrror: Mitigating
downtime in mobile edge computing, an extension to live migration.
Procedia Computer Science, 203:41–50, 08 2022.

[18] P. J. Araújo, H. F. López, and A. Santos. Efficient mobility management
for mec orchestration in vehicular scenarios. 2024 20th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), pages 383–390, 2024.

[19] Simulte. https://omnetpp.org/download-items/SimuLTE.html.
[20] ETSI MEC Sandbox. https://try-mec.etsi.org/.
[21] Mobfogsim. https://github.com/diogomg/MobFogSim.
[22] SUMO Simulator. https://www.eclipse.org/sumo/.
[23] O. Wendlasida, A. Andrea, J. Badii, C.T. Hind, and G. Rémy. Can edge

computing fulfill the requirements of automated vehicular services using
5G network ? In The 2024 IEEE 99th Vehicular Technology Conference
(VTC2024-Spring), Singapore, Singapore, June 2024. IEEE.

[24] N. Auluck, A. Azim, and K. Fizza. Improving the schedulability of
real-time tasks using fog computing. IEEE Transactions on Services
Computing, 15(1):372–385, 2022.

[25] A. Bauer S. Kounev P. Heegaard F. Metzger, T. Hofeld. Modeling of
aggregated iot traffic and its application to an iot cloud. Proceedings of
the IEEE, 107:679–694, 2019.

[26] G. Stea A. Virdis A. Noferi, G. Nardini. Rapid prototyping and
performance evaluation of etsi mec-based applications. Simulation
Modelling Practice and Theory, 123:102700, 2023.

[27] C. Li, Y. Wang, H. Tang, and Y. Luo. Dynamic multi-objective optimized
replica placement and migration strategies for saas applications in edge
cloud. Future Generation Computer Systems, 100:921–937, 2019.

[28] J. Zhou, F. Chen, Q. He, X. Xia, R. Wang, and Y. Xiang. Data caching
optimization with fairness in mobile edge computing. IEEE Transactions
on Services Computing, 16(3):1750–1762, 2023.

[29] R. Sayegh, A. Dandoush, H. Marouane, and S. Hoteit. Preliminary
Evaluation and Optimization of Task Offloading and Latency in Vehic-
ular Edge Computing. IEEE 21st International Conference on Smart
Communities: Improving Quality of Life Using AI, Robotics and IoT,
2024.

[30] Omnetpp. https://github.com/omnetpp/omnetpp, 2024.
[31] Matm. https://github.com/rimsayegh/simu5g-MATM.
[32] inet. https://github.com/inet-framework/inet/releases/tag/v4.5.0, 2024.
[33] Paulo J. Araújo, Helena Fernández López, João Faria, and Alexandre

Santos. Towards mobility management in mec simulation. 2023 IEEE
9th International Conference on Network Softwarization (NetSoft), pages
207–211, 2023.

[34] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis. Simu5g–an
omnet++ library for end-to-end performance evaluation of 5g networks.
IEEE Access, 8:181176–181191, 2020.

[35] O-RAN WhitePaper - Building the Next Generation RAN.
https://www.o-ran.org/resources, October 2018.

ITC Li
bra

ry

