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Abstract—Recent workload measurements in Google data
centers provide an opportunity to challenge existing models and,
more broadly, to enhance the understanding of dispatching policies
in computing clusters. Through extensive data-driven simulations,
we aim to highlight the key features of workload traffic traces
that influence response time performance under simple yet
representative dispatching policies. For a given computational
power budget, we vary the cluster size, i.e., the number of available
servers. A job-level analysis reveals that Join Idle Queue (JIQ)
and Least Work Left (LWL) exhibit an optimal working point
for a fixed utilization coefficient as the number of servers is
varied, whereas Round Robin (RR) demonstrates monotonously
worsening performance. Additionally, we explore the accuracy
of simple G/G queue approximations. When decomposing jobs
into tasks, interesting results emerge; notably, the simpler,
non-size-based policy JIQ appears to outperform the more
“powerful” size-based LWL policy. Complementing these findings,
we present preliminary results on a two-stage scheduling approach
that partitions tasks based on service thresholds, illustrating
that modest architectural modifications can further enhance
performance under realistic workload conditions. We provide
insights into these results and suggest promising directions for
fully explaining the observed phenomena.

Index Terms—Dispatching; Scheduling; Multiple parallel
servers; Real-world workload
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I. INTRODUCTION

Finding effective and easily implementable algorithms for
distributing the workload in a data center is among the top
issues in the framework of the evolution of cloud and edge
computing. Given a cluster of servers to which a sequence of
jobs is offered, dispatching policies take care of assigning each
job (possibly broken down into several tasks) to one server.
Scheduling policies specify how each server deals with its own
assigned jobs/tasks.

While many dispatching and scheduling policies have been
defined and analyzed under different assumptions (e.g., see
[1]–[4]), still many open issues are on the table [5]. A
thorough understanding of multi-server cluster systems remains
incomplete due to the difficulty of modeling the essential
characteristics of workloads, particularly when they involve
complex policies. The viability of model analysis often requires
strongly simplifying assumptions [6]–[9], e.g., Poisson arrivals
or negative exponential service times. Assessing whether those
assumptions match, at least qualitatively, real system perfor-
mance is an essential step of the design and optimization of
computing clusters. To this end, the availability of high-quality

massive workload measurements is valuable for characterizing
real-world workloads in data centers.

A detailed analysis of the Google Borg dataset in [10]–[13]
reveals discrepancies between basic queuing model assumptions
and the characteristics of real-world data. Specifically, job
arrivals do not follow a Poisson process, and the service time
interpreted as CPU requirements in [5], [13], does not adhere
to a negative exponential distribution. On the contrary, the
distribution of service times is highly variable and exhibits
an extremely heavy-tailed behavior, whereby a small fraction
of the very largest jobs comprises most of the load. In prior
empirical studies of compute consumption and file sizes [14]–
[18], the authors found that the top 1% of jobs comprise 50%
of the load. The heavy-tailed property exhibited in Google data
centers today is even more extreme than what was seen in
[14]–[18]. For Google jobs today, the largest (most compute-
intensive) 1% of jobs comprise about 99% of the compute
load [11], which might cause a bigger discrepancy between the
prediction of analytical models and data-driven simulations.

In this paper, we consider real workload measurements and
data-driven simulations to evaluate the performance of a server
system comprising a dispatcher and a cluster of homogeneous
servers. The focus is on comparing three representative dis-
patching policies, of different complexity: size-based (Least
Work Left (LWL)), non-size-based, but stateful (Join Idle Queue
(JIQ)), and non-size-based stateless (Round Robin (RR)). Our
analysis reveals that dispatching has a significant impact on
performance, highlighting the need for dedicated attention to
this aspect of system design.

The main research questions that we try to answer in this
work are as follows. Do simple analytical models provide in-
sight consistent with what real-world workloads reveal through
data-driven simulations? What are the main factors affecting
response time performance? Based on the understanding gained
from the first two points, can we improve performance through
system architecture design, even using very simple policies?

With reference to this last question, as noted in [19], one
of the most common queuing theory questions asked by
computer systems practitioners is "How can I favor short
jobs?". This target can be tackled by using either Shortest
Remaining Processing Time (SRPT) or Preemptive-Shortest-
Job-First (PSJF) scheduling policies; along with LWL or Size
Interval Task Assignment (SITA) dispatching policies. However,
in practical scenarios, when jobs arrive at computing clusters,
their sizes are typically unknown to the system, rendering
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these solutions impractical in real-world settings. For these
reasons, First Come First Served (FCFS) is widely used
in many organizations, including Google, where the Borg
data center scheduler operates a large central FCFS queue
[5]. However, the simple and easily implementable FCFS
scheduling policy suffers from service time variability. As
a solution, we propose a novel two-stage dispatching and
scheduling approach, stemming from the insight gained from
the analysis presented in this work. This two-stage multi-server
system combines the simplicity of the RR dispatching policy
with FCFS scheduling, where neither the dispatcher nor the
scheduler needs prior knowledge of job characteristics. Yet, it
is shown that it outperforms single-state server clusters, even
using more sophisticated dispatching policies.

To gain insight and motivate our proposed two-stage ar-
chitecture, first, we focus on job-level performance analysis.
LWL, JIQ and RR dispatching policies are compared for a
single-stage cluster of n servers, as the number n varies, under
the constraint that the average load per server be the same (i.e.,
the overall computational power of the cluster is fixed). The
obtained results provide insight into the effect of parallelism
on response time under real-world workloads. This analysis
also helps us identify the root causes of discrepancies between
simple analytical models and simulation results. It appears that
service time process structure is the main source of discrepancy,
while inter-arrival times of jobs could be replaced with a
Poisson stream of arrivals with little impact on the accuracy
of predictions of the analytical model.

In the second step, we account for the internal structure of
jobs, which are decomposed into independent tasks. The most
significant finding is that, when accounting for task level, JIQ
outperforms LWL in spite of being heavy-traffic delay sub-
optimal. Even more strikingly, when introducing multi-stage
architecture, even RR outperforms LWL in a substantial way,
by properly optimizing the meta-parameters of the architecture.
This points to a promising direction for developing high-
performance systems, namely smart design of the architecture,
rather than smart (possibly complex) policies.

The rest of the paper is organized as follows. Section II
provides a brief explanation of the main features of work-
load measurement data. Section III gives an account of the
considered model setting. Numerical results of data-driven
simulations and their comparison with the model are presented
in Section IV. Finally, conclusions are drawn in Section V.

II. WORKLOAD DATASET

This section describes the Google traffic dataset released in
2020, capturing one month of user and developer activity in
May 2019. It provides detailed resource usage data, such as
Central Processing Unit (CPU) and Random Access Memory
(RAM), across eight global data centers ("Borg cells").

Traffic data includes five tables detailing users’ resource
requests, machine processing, and task evolution within Borg’s
scheduler. Users submit jobs comprising one or more tasks
(instances), each requiring specific CPU time and memory

space. Resource units are based on Google Normalized Com-
puting Unit (GNCU) (default machine computational power)
and Google Normalized Memory Unit (GNMU) (memory units).
CPU time associated with the execution of a task assumes that
servers are equipped with one GNCU.

Jobs follow a life cycle: tasks are queued or processed based
on load and classified upon completion as “FINISH” (success)
or “KILL,” “LOST,” or “FAIL” (failure) [10]. Only “FINISH”
tasks were analyzed, as they provide reliable resource data. The
dataset includes task identifiers, CPU time, assigned memory
(min, max, avg over 300-sec windows), and 1-sec samples of
resource usage.

Digging into Google’s data, the workloads have been
reconstructed with the following key features:1

• Jj - number of tasks belonging to job j.
• Aij - Arrival time (in seconds) of task i of job j.
• Zij - CPU time (in seconds) required to process task i

of job j on a reference CPU equipped with one GNCU.
• Mij - maximum amount of memory space required by

task i of job j, expressed in GNMUs.

This study focuses on simplified workload description by
considering only arrival times and CPU requirements. Memory-
based multi-dimensional models are deferred to future research.
Specifically, we analyze workload both at the job level,
disregarding the breakdown of each job into separate tasks, and
at the task level, where we allow tasks belonging to the same
job to be assigned to different servers. The characterization
of the workload at the job level consists of job arrival time
and job CPU time. The former is well defined since measured
data provide evidence that arrival times Aij depend only on j,
i.e., all tasks belonging to the same job arrive simultaneously
(within the accuracy of timestamps). As for job CPU time, it
is simply defined as the sum of CPU times required by all
tasks belonging to the job.

The whole considered dataset (31 days worth of measured
activity in Borg cell c) consists of 4399670 jobs, comprising
7010742 tasks. Most jobs consist of a single task (96.6%),
yet “monster” jobs are also recorded, with the largest ones
comprising up to 11160 tasks. The mean job CPU time is
10.83 s. Only 13.25% of jobs require CPU time larger than
the mean, while 99% of jobs have CPU time less than 32.26 s,
99.9% of jobs less than 452.95 s, and 99.99% of jobs less than
4974.2 s. The largest 0.1% of jobs is responsible for 67.6%
of the overall required CPU effort. These few numbers give
evidence of the extreme variability of workload described in
Google’s data.

III. MODEL DESCRIPTION

In this section, we provide simple analytical formulas to
evaluate the mean response time of single-stage server clusters.
A flow of jobs is submitted to a cluster of n fully accessible
and identical servers. New jobs arrive with mean rate λ. Let

1The dataset for all eight data centers is available at https://github.com/
MertYILDIZ19/Google_cluster_usage_traces_v3_all_cells.
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also σA be the standard deviation of inter-arrival times and
CA = λσA the corresponding Coefficient Of Variation (COV).

A job comprises J ≥ 1 tasks. Task i belonging to a given
job is characterized by the time Zi required to be processed
on a reference processing core having a capacity of 1 GNCU.
The service time of a job on a server of capacity µ GNCU is
given by

X =
J∑

i=1

Zi

µ
=

Y

µ
(1)

where Y =
∑J

i=1 Zi is the service time of the job on a
reference server with a capacity of 1 GNCU (i.e., µ = 1).

We assume that Y can be characterized as a continuous
random variable with Cumulative Distribution Function (CDF)
FY (t) = P(Y ≤ t), Complementary Cumulative Distribution
Function (CCDF) GY (t) = P(Y > t) and Probability Density
Function (PDF) fY (t). The mean of Y is denoted with E[Y ]
and standard deviation given by σY . We define also the COV
of Y as CY = σY /E[Y ]. Note that GX(t) = GY (µt), where
X is job service time on a generic server having a capacity of
µ GNCU.

It is assumed that all servers use FCFS policy and have the
same capacity of µ GNCUs. The parameters µ and the number
n of servers are set so that

λE[Y ]

nµ
= ρ0 (2)

for a given fixed value of ρ0. Note that, for any considered
server arrangement, the overall service capacity nµ is a
constant, given the user demand characteristics λ and E[Y ],
and the target utilization coefficient ρ0.

Since X = Y/µ is the service time of a job, from
Equation (2) it follows that the mean service time is given by

E[X] =
E[Y ]

µ
=

nρ0
λ

(3)

Finally, since µ is a constant for a given number of servers,
the COV of the service time X is the same as that of Y ,
CX = CY . Summing up, the first two moments of inter-arrival
times and service times of a workload at the job level are given
by 1/λ, CA, E[Y ], and CY .

We define the job response time R as the time elapsing since
job arrival until the job is fully completed (i.e., all of its tasks
are finished). We do not consider the possibility that the job is
killed before being completed.

The analytical expression given in the following is derived
following Marchal’s approximation of G/G queuing systems
for mean response time [20]. The essential idea is to start from
the expression of the mean response time.

It is therefore assumed that arrivals and service times
form renewal sequences, disregarding any possible correlation
structure of the arrival and service process. Moreover, it is
assumed that inter-arrival times are independent of service
times.

All models considered in the following deal with a job as
a whole, i.e., all tasks belonging to that job are assigned to

the same server and run one after the other (server use FCFS
policy). While not exploiting the break-up of a job into smaller
tasks, which enhances flexibility, this analysis is easier to
interpret and gain insight into the relationship of performance
predicted by analytical models and real-world measurements.

A. Round Robin (RR) dispatching

In this case, the arrival stream of the job is distributed
across n servers according to a RR dispatching policy. The
j-th arriving job is assigned to server 1 + (j mod n). Hence,
the mean arrival rate at each server is λ1 = λ/n and the COV
of arrivals to a server is given by CA1 = CA/

√
n. The mean

service time is E[X1] = E[Y ]/µ = nρ0/λ. The service time
COV is CX1

= CX = CY . The server utilization coefficient
is ρ1 = λ1E[X1] = ρ0, same for all servers. Since dispatching
is instantaneous, the mean response time reduces to the time
through a server. It is given by

E[RRR] = E[X1] + E[X1]
ρ1

1− ρ1
ϕ1 (4)

where ϕ1 is the scaling factor of the mean waiting time to
account for variability of inter-arrival and service times:

ϕ1 =
(1 + C2

X1
)(C2

A1
+ ρ21C

2
X1

)

2(C2
A1

+ ρ21C
2
X1

)
(5)

This result can be expressed in terms of the parameters of
the input workload, λ, CA, E[Y ], CY and the target ρ0, which
is a design parameter. The final expression is

E[RRR] =
nρ0
λ

[
1 +

ρ0
1− ρ0

(1 + C2
Y )(C

2
A/n+ ρ20C

2
Y )

2(C2
A/n+ ρ20C

2
Y )

]
(6)

B. Least Work Left (LWL) dispatching

In this case, the arrival stream of jobs is distributed across
n servers according to the anticipative policy LWL. Servers
keep track of the amount of residual work required to clear
their backlog at any given time. Upon arrival of a new job, the
dispatcher polls servers and collects the amount of unfinished
work of each of them. It then selects the server that has the
least amount of unfinished work. Ties are broken at random
(e.g. when multiple servers are idle).

It can be shown that this arrangement is equivalent to a multi-
server queuing system with n servers and a single, centralized
waiting line, i.e., a G/G/n queue. We resort then to Marchal’s
approximation for multi-server G/G queues. The mean service
time is E[X] = E[Y ]/µ = nρ0/λ, the mean offered traffic is
A = λE[X] = λE[Y ]/µ = nρ0 and the utilization coefficient
of any server is ρ = A/n = ρ0. The mean response time is
given by

E[RLWL] = E[X] + E[X]
C(n, nρ)

n(1− ρ)
ϕ

=
nρ0
λ

[
1 +

C(n, nρ0)

n(1− ρ0)

(1 + C2
Y )(C

2
A + ρ20C

2
Y )

2(C2
A + ρ20C

2
Y )

]
(7)
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where C(m,A), for any positive integer m and non-negative
real A, is the Erlang-C formula given by

C(m,A) =
B(m,A)

1− A
m + A

mB(m,A)
(8)

and B(m,A) is the Erlang-B formula:

B(m,A) =
Am

m!∑m
j=0

Aj

j!

=

{
1 m = 0,

AB(m−1,A)
m+AB(m−1,A) m > 0.

(9)

C. Join Idle Queue (JIQ) dispatching

The stateful, but not anticipative policy JIQ works as follows.
Upon a new arrival, the dispatcher looks up a table of n bits.
The j-th bit equal to 1 means that server j is idle. If there is at
least one bit equal to 1 in the dispatcher table, the dispatcher
picks one of them chosen uniformly at random and assigns the
newly arrived job to the corresponding server. The bit is reset.
If all bits are 0, the dispatcher selects one server at random
among all n servers.

On the server side, as soon as a server completes its last job
and goes back to idle state it sends a message to the dispatcher,
to set its bit to 1.

This policy requires a number of messages in the order of
the number of jobs dealt with. The complexity of dispatching
is quite limited. The price to pay is that JIQ is shown to be
sub-optimal, i.e., it is not Heavy-Traffic Delay Optimal [2].
The reason is that, under heavy traffic, JIQ essentially boils
down to a flat random assignment of jobs to the cluster of n
servers, which is known (and intuitive) to be a sub-optimal
policy.

Given this description of JIQ, it appears that it behaves
exactly as LWL as long as there is at least an empty server. If all
servers are busy, JIQ is equivalent to a random selection policy,
which has a similar performance as RR. Given the number
of servers, n, and the mean offered traffic A = λE[X] =
λE[Y ]/µ = nρ0, the probability that all servers are busy can be
approximated with the Erlang B formula B(n,A) = B(n, nρ0).
Then, the mean response time can be approximated as follows:

E[RJIQ] ≈ B(n, nρ0)E[RRR]+[1−B(n, nρ0)] E[RLWL] (10)

where B(m,A) is given in Equation (9) and subscripts on the
variable R highlight the policy to be considered for computing
the relevant mean response time.

IV. PERFORMANCE EVALUATION

As mentioned in Section II, each job consists of one or more
tasks. In the analysis of the dispatching algorithms, we carry
out the performance evaluation in two scenarios:

• Job level – Ignore the task level of the data and consider
only jobs, using the aggregated service time of all tasks
belonging to each job.

• Consider the task level of the data, allowing independent
assignment of tasks to the server.

Based on these two scenarios, we evaluated how dispatching
policies, system architecture, and parallelism influence key
performance metrics, such as mean job response time and job

Table I
SIMULATION PARAMETERS

Parameter Value/Description
Number of Servers, n [2, 1000]
Target utilization coefficient of servers, ρ0 0.8
Server Processing Rate, µ Computed based on fixed overall capacity
Threshold, θ {10, 20, 30, 40, 50, 60, 70, 80, 90, 99}

quantile of task CPU time
Dispatching Policies RR, JIQ, LWL
Scheduling Policy FCFS
Performance Metrics Mean Response Time, Mean Slowdown

slowdown. The latter is defined as the ratio of the response time
of the job to the job service time (the sum of service time of
all tasks belonging to that job). When analyzing performance
at the job level, the slowdown is necessarily no less than 1. In
the task level analysis, thanks to the parallelism of multiple
servers and independent task dispatching, it might be the case
that the slowdown is even less than 1.

Simulations are run by extracting one day-worth workload
data from the whole trace. The first two moments of inter-
arrival times (Inter arrival timess (IATs)) and of service times
(CPU times) are estimated from the considered sample.

Table I provides an overview of the key parameters used
in our data-driven simulations. To explore the impact of
parallelism and architectural design on system performance,
we maintained a fixed overall system capacity while varying
the number n of servers and the processing rate per server
µ. This was done under the constraint that the product nµ
remained constant, ensuring adherence to the fixed utilization
coefficient ρ0.

These parameters were chosen to reflect realistic scenarios
commonly found in large-scale computing environments. By
varying the number of servers, we assessed the scalability
of dispatching policies under increasing parallelism, while
adjustments to the processing rate per server provided insights
into the trade-offs between server capacity and load distribution.
Our evaluation focused on three dispatching algorithms: RR,
JIQ, and LWL, combined with FCFS scheduling across all
servers.

A. Job-level performance evaluation in a single-stage cluster

In this subsection, we focused exclusively on job-level data
to evaluate the performance of each dispatching policy using
both analytical models and data-driven simulations.

Figure 1 shows job mean response time as a function of the
number n of servers for the original job-level data and a target
utilization coefficient ρ0 = 0.8. By “original” we mean that the
jobs, their arrival times, and CPU demands were considered
exactly as provided in the dataset. Solid lines in Figure 1
are obtained by means for the analytical models introduced
in Section III. Simulation results are illustrated as markers,
connected with a dashed line. Marker style and colors are
preserved throughout the plots of this Section.

It is apparent that models fail to give accurate predictions of
performance. Yet, the qualitative behavior of the dispatching
policies is correctly predicted by models. Namely, RR yields a
monotonously increasing job response time as the number of
servers grows. Due to poor job dispatching, RR does not benefit
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Figure 1. Mean response time of a cluster of n servers as a function of n.
Lines are computed by using analytical models, and markers with the dashed
lines correspond to data-driven simulations based on the workload of day 4 of
the Google trace of cell c. The utilization coefficient of servers is ρ0 = 0.8.
Note: The data used includes original values with outliers and is not
shuffled.

from increased parallelism and only suffers from decreasing
server speed as n grows. On the contrary, both JIQ and LWL
exhibit a minimum for some optimal degree of parallelism.
This optimal configuration stems from striking the best trade-
off between a high degree of parallelism, which helps prevent
a large job to stuck in the queue and imposes a high delay
on several smaller jobs, and the speed of each server, which
decreases as n grows. For small values of n, a few big jobs
are already enough essentially to choke the server cluster. For
very large values of n, almost no jobs have to wait before a
server is assigned, but servers are very slow. Hence, there is
an optimal degree of parallelism.

LWL turns out to offer the best performance among the
three considered policies, which is not surprising in view
of the fact that this is also the most demanding policy. It
requires knowledge of job size as well as of the state of the
servers. As expected, the sub-optimal policy JIQ yields worse
performance as compared to LWL. Yet, for sufficiently large
values of n, LWL and JIQ boils down to essentially the same
policy, since there is an idle server upon each job arrival with
high probability (see Figure 8). This remark points at a very
interesting outcome of this analysis. A sophisticated policy as
LWL brings no advantage over a much simpler one, as JIQ, if
the system architecture is properly designed. In this case, we
simply need to boost the parallelism of the server cluster large
enough. However, deploying a large number of slow servers,
while making LWL and JIQ equivalent, does not yield the best
possible performance at the job level. We will dig more along
these lines in the next section, with the task level analysis.

Summing up, RR mean job response time grows steadily
with n, while JIQ and LWL have a minimum for some optimal
n, LWL offering uniformly better performance as compared
to JIQ. The same remarks can be made based on the results
of analytical models. Under this respect, we may say that
models provide a correct qualitative insight, even if numerical
predictions are grossly departing from simulations.

To investigate the reasons behind the observed mismatch,
we analyzed the impact of IAT, CPU time, and the influence
of outlier jobs. For this purpose, we consider the following
modifications of workload data used to drive simulations.

• Shuffle the IATs and leave the sequence of job CPU
demands unchanged.

• Shuffle job CPU demands and leave the sequence of IATs
unchanged.

• Maintain the sequences of IATs and job CPU demand
unchanged, but remove those job whose CPU demand is
larger than the 99.9% quantile of CPU demand (outlier
jobs).

The first two modifications are motivated by the aim to break
any possible correlation structure in the measured workload
traces.

Figure 2 compares the mean job response time as a function
of the number of servers n for the original data (Figure 2(a))
and for the first two modifications (Figures 2(b) and 2(c),
respectively).

From these experiments, we observed that IAT has a
negligible effect on performance. However, shuffling the
CPU demands significantly influences the performance of all
dispatching policies.

Figure 3 plots the mean job response time as a function of
n in case of the third workload modification listed above, i.e.,
outlier jobs have been removed.

Compared with previous results, it is seen that removing just
0.01% of jobs with the largest CPU time values (outliers) has
a substantial impact on the mean response time, highlighting
the critical role of these "monster" jobs in overall system
performance. While maintaining the same qualitative behavior,
analytical models still fail to capture the performance of data-
driven simulations.

Finally, we apply all modifications simultaneously, i.e., we
construct a workload trace by removing outliers from the
original data, then shuffling both IATs and CPU times, to
break any correlation in the original data sequences. The
corresponding results are shown in Figure 4, where the job
mean response time is plotted versus n.

This time analytical models appear to be in excellent
agreement with data-driven simulation results. Further analysis,
not shown for the sake of space, shows that restoring the
original sequence of IATs does not affect the accuracy of the
model significantly. These results point out that the discrepancy
between model predictions and simulation results are rooted
in two key characteristics of the workload traces:

• CPU times bear a correlation structure that strongly
impacts performance. The analytical models fail since
they are based on renewal assumptions that disregard any
correlations among service times.

• Outlier jobs introduce a distortion in matching the first
two moments of service times that reflects in inaccurate
predictions of the model.

The whole analysis above is based on one-day-worth of
the workload traces. We therefore examined whether there is
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(a) Original data.
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(b) Only IATs shuffled.
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(c) Only CPU shuffled.

Figure 2. Decomposition of original data and comparative analysis of mean response time of a cluster of n servers as a function of n under different conditions.
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Figure 3. Mean response time of a cluster of n servers as a function of n.
Lines are computed by using analytical models, and markers with the dashed
lines correspond to data-driven simulations based on the workload of day 4 of
the Google trace of cell c. The utilization coefficient of servers is ρ0 = 0.8.
Note: The data used does not include outliers but both IAT and CPU
values are kept unchanged.

a significant difference in performance across different days
of the month. For this purpose, we evaluate the mean job
response time for each of the 31 days of the original trace and
present the results in Figure 5, as a function of the number
of servers n. The diagram in Figure 5 is a box-plot, showing
the median (yellow dash inside the vertical rectangles), the
interval covered by those samples that lie between the 25% and
the 75% quantiles of the obtained results day by day (vertical
rectangle) and the entire range of the sample (error-bar). It
is apparent that there is some spread of obtained mean job
response time day by day, but this does not affect any of the
remarks we have made on the behavior of the mean response
time with the three considered dispatching policies. It is to be
noted that RR appears to be more stable than the other two
policies.

The results presented in Figure 5 indicate that the analyses
conducted so far are consistent across different days. In other
words, the data exhibits similar behavior regardless of the day
being analyzed.

We further analyze the slowdown behavior with job level
dispatching in Figure 6. For job-level dispatching, as expected,
the LWL policy consistently outperformed JIQ. Performance
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Figure 4. Mean response time of a cluster of n servers as a function of n.
Lines are computed by using analytical models, and markers with the dashed
lines correspond to data-driven simulations based on the workload of day 4 of
the Google trace of cell c. The utilization coefficient of servers is ρ0 = 0.8.
Note: The data used does not include outliers and both IAT and CPU
values are shuffled.

of LWL and JIQ converge under high parallelism. In such
scenarios, both policies behave similarly because an idle server
is almost always available when a job arrives, allowing both
to assign the job to the idle server, resulting in a slowdown
equal to 1.
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Figure 5. Mean response time of various dispatching algorithms for different
numbers of servers over a 31-day period in May, shown as boxplots considering
the Job level data structure. The yellow line represents the median of the mean
response time of 31 days, while the spread is visualized through the boxplots.
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Figure 6. Job slowdown of a single-stage server cluster as a function of the
number of servers n for job level dispatching.

B. Task-level performance evaluation in a single-stage cluster

Moving to the more realistic scenario where the internal
structure of jobs is exploited for a more flexible assignment
of workload, we assume tasks belonging to the same job can
be dispatched to servers independently of one another. The
considered metric is still mean job response time, where a job
is completed only once all of its tasks are done.

Figure 7(a) shows the mean job response time as a function
of n for the task-level system. Mean response times are quite
different from the case of job-level analysis.

Most interestingly, for a wide range of the number of servers,
JIQ turns out to be the best policy, beating the supposedly more
performing LWL. As already seen in the job-level analysis, for
very large values of n the two policies tend to coincide. As for
RR, it is still monotonously increasing with n, showing that
this simple stateless policy cannot benefit from parallelism in
a single-stage server cluster.

The best-performing configuration is attained from n in the
order of several hundred servers. At the optimum working
point, LWL and JIQ offer the same performance level, once
again proving that it is not necessary to resort to a size-based
(anticipative) policy.

To dig further in the comparison among these policies
with task level dispatching, the effect of shuffling either
IATs of CPU times2 is shown in Figures 7(b) and 7(c)
respectively. It can be observed that shuffling IATs has a
negligible effect on performance compared to those obtained
with the original workload. On the contrary, shuffling CPU
times significantly alters the simulation results. LWL is restored
as the winning policy, thus aligning with results found with
job-level dispatching. This result points out the root cause
for the surprising policy ranking in Figure 7(a): correlation
structure of CPU times, giving rise to “monster” jobs that
comprise a large number of big tasks.

More in depth, we believe the reason for the behavior shown
in Figure 7 lies in how LWL balances the workload across

2CPU times are shuffled among all tasks, yet preserving the number of
tasks belonging to each job.

all servers. There are jobs with thousands of tasks, and when
these large jobs arrive, LWL evenly distributes tasks to servers,
thus ultimately blocking all servers. This causes smaller jobs,
which have a single task (the vast majority of jobs is that way),
to get stuck in the system while waiting for the large jobs to
complete.

On the other hand, JIQ behaves differently when handling
large jobs with thousands of tasks. The policy assigns tasks one
by one to idle servers and, once no idle servers are available,
starts assigning tasks randomly to busy servers. We believe
this behavior benefits smaller jobs and tasks, as it prevents that
all servers from being completely blocked by the large jobs.
Unequal server load favors some servers becoming idle again
sooner than it would happen with LWL.

This behavior can be illustrated by the following argument.
Say the n servers are all busy and let U1, U2, . . . , Un be the
unfinished work in the n servers. For ease of notation, let
us assume that the Uk s are sorted in ascending order, i.e.,
U1 ≤ U2 ≤ · · · ≤ Un. Let X be the service time of a task to
be dispatched. With LWL, the task goes to server 1. Hence,
the minimum unfinished work among all servers, after the new
task has been dispatched, is ULWL = min{U1 + X,U2}. In
the case of JIQ, with probability 1/n the task is dispatched
to server 1 and the outcome is the same as with LWL. With
probability 1− 1/n, the task goes to any other server. In the
latter case, the minimum unfinished work, after the new task has
been dispatched, is UJIQ = U1. Hence, ULWL − UJIQ = 0 with
probability 1/n, while ULWL−UJIQ = min{U1+X,U2}−U1 =
min{X,U2 − U1} ≥ 0 with probability 1− 1/n. For large n
it is seen that ULWL > UJIQ with high probability. This implies
that servers are biased to becoming idle again sooner with
JIQ rather than with LWL. Getting back an idle server sooner
benefits other jobs, especially smaller ones, made up of a single
task.

To further support our hypothesis, we analyze the probability
of having at least one idle server upon job arrival, which is
plotted in Figure 8 against n. It is apparent that this event is
quite more probable with JIQ than with LWL, which tends to
equalize the backlog of all servers.

For very large values of n (beyond about 500 servers), the
probability of finding an idle server is essentially 1 for both
JIQ and LWL. This is the region where the two policies yield
the same mean job response time.

Summing up, the randomness of task assignment with JIQ
makes server backlog unequal on a short-time scale, which
favors some servers to become idle again sooner than with
LWL. Note however that pure random assignment would yield
unsatisfactory performance as proved by looking at RR. JIQ
introduces a minimum of smartness in choosing an idle server
as long as there is one. When all of them are busy if n is
large enough, randomly assigning tasks turns out to outperform
more “aware” assignments.

Finally, the job slowdown with task level dispatching is
plotted in Figure 9 against n. In contrast to the case of job-
level dispatching, the task-level results reveal a different trend.
While JIQ generally achieves a lower mean response time
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(b) Only IATs shuffled.
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Figure 7. Decomposition of original data and comparative analysis of mean response time of a cluster of n servers as a function of n under different conditions.
The data structure includes task level but E[R] is the mean job response time.
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Figure 8. Probability of at least one server being idle upon job arrival, shown
as a function of the number of servers for various dispatching policies. Note:
The task level data structure has been used.
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Figure 9. Job slowdown in a single-stage server cluster as a function of n
with task level dispatching.

than LWL, it turns out that LWL yields superior slowdown
performance with respect to JIQ. This is not in contradiction
with the results shown for the mean response time, in view
of the intuitive explanation given above. It is true that LWL
does a better job than JIQ in distributing the workload evenly,

and this brings better slowdown performance. However, in the
presence of “monster” jobs with a large number of heavy tasks,
it is just this equalization of server backlog that makes the
server unfinished work grow uniformly, thus failing to give an
escape channel to later smaller jobs. It is an example of the
curse of being too smart.

C. Two-stage server cluster

After observing the surprising results with the task-level
data structure, where a simple policy like JIQ outperforms
a more advanced policy like LWL, we were motivated to
explore the impact of system architecture on response time
performance under real-life workload data. Specifically, we
questioned whether a suitable system design could allow even
RR to outperform smarter policies. To explore this possibility,
we adopted the two-stage dispatching and scheduling system
proposed in [21].

The two-stage system operates as follows. When a task
arrives, it is handled by a front-end dispatcher, which assigns it
to one of the servers in the first stage, according to RR policy.
A service time threshold, θ, is defined for the n1 servers in this
stage. If a task completes its processing within the threshold θ,
it exits the system, having been fully served. Tasks that exceed
this threshold are stopped and transferred to the second stage
dispatcher, again using RR policy. These tasks restart to be
processed to completion on one of the servers in the second
cluster, which comprises n2 = n− n1 servers. All servers of
both clusters adopt FCFS scheduling.

In contrast to the system proposed in [21], we conducted
extensive hyperparameter tuning to optimize the server alloca-
tion between stages (n1 and n2) and to determine the optimal
threshold θ. With this design, we play with architecture and
meta-parameters, while adopting the simplest and most easily
implementable policies.

Remarkably, despite its simplicity, the two-stage architecture
outperforms single-stage multi-server systems, even adopting
more sophisticated policies, such as LWL and JIQ. This is
illustrated in Figure 10, where the mean job response time is
plotted against n for task level dispatching, this time including
also the two-stage architecture results.
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Figure 10. Mean job response time as a function of the overall number n of
servers for task level dispatching.

The two-stage system achieves a lower mean response time
with just 10 servers compared to a single-stage system with
1000 servers. By isolating short tasks ("mice") from longer
ones ("elephants"), it effectively reduces delays and improves
resource utilization. However, its performance declines with
larger server counts, due to the decrease in server speed and
the reduced number of servers in the first stage compared
to the single-stage system, leading to diminished efficiency.
Nevertheless, the two-stage system demonstrates the significant
impact of architectural design on system performance, even
when utilizing simple dispatching strategies.

V. CONCLUSIONS

In this paper, we analyzed several dispatching and scheduling
policies in multi-server systems using real-world workload data.
We highlighted key discrepancies between analytical models
and simulations and demonstrated the limitations of traditional
queuing theory in complex data center environments. Our
results show that sophisticated policies like LWL and JIQ
generally outperform simpler ones like RR, though JIQ can
occasionally rival LWL under specific workloads. Extending
the analysis to task-level data revealed significant benefits in
isolating short tasks ("mice") from longer ones ("elephants"),
improving resource utilization and response times. The pro-
posed two-stage system achieves remarkable performance
improvements, outperforming single-stage configurations in
scenarios with fewer servers. While its performance declines
with larger server counts due to first-stage bottlenecks, the
system highlights the impact of architectural design. Future
work will focus on enhancing the scalability of the two-stage
system and expanding its applicability to diverse workload
types.
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