
A Fast Algorithm for Multiserver Queueing
Systems with Setup Times and Power-saving Modes

Thu Le-Anh
Graduate School of Science and Technology

University of Tsukuba
Tsukuba, Japan

0000-0002-1474-134X

Tuan Phung-Duc
Institute of Systems and Information Engineering

University of Tsukuba
Tsukuba, Japan

0000-0002-5002-4946

Abstract—Multi-server queueing models with setup times have
been extensively investigated due to their applications in data cen-
ters, which have rapidly expanded in recent years. These models
employ an ON-OFF policy to reduce energy consumption for idle
servers, though this can increase delay due to setup processes. To
minimize the drawback of the ON-OFF policy, a setup queueing
model with a power-saving policy was recently proposed in [9],
enabling servers in a power-saving mode to process incoming
jobs while simultaneously setting up to a normal mode. Our
paper considers the same model but adopts a generating function
approach rather than the matrix geometric method as in [9].
Our approach provides exact expressions for the joint stationary
queue length distribution, generating functions, and factorial
moments of any order. By exploiting the special structure of
the Markov chain, the generating function approach achieves
significant reductions in computational complexity compared to
existing methods. In addition, this paper presents numerical
experiments to evaluate the performance-energy trade-off using
an existing speed-based cost function.

Index Terms—Setup, Power-saving, Data center

2025 36th International Teletraffic Congress (ITC 36)

I. INTRODUCTION

The rapid adoption of artificial intelligence is significantly
driving the expansion of data centers. Large-scale data centers
are critical for meeting the demands of modern digital life,
but they require a massive amount of energy to operate. Data
centers consumed 460 TWh in 2022, which could rise to over
1,000 TWh by 2026 in the worst-case scenario [1]. While
some may consider this an unavoidable cost, the reality is that
servers spend a substantial portion of their time idle. Indeed,
the servers are typically utilized only 10–30% of the time,
yet during idle periods, they consume around 60% of their
peak [2]. To reduce idle power consumption, idle servers are
often switched to an off state, which we refer to as an ON-
OFF policy. However, servers that are turned off need some
setup time to become active again, during which they consume
energy without performing any tasks. Hence, choosing whether
and when to switch off a server is far from trivial. Turning off
idle servers poses a trade-off between energy conservation and
system performance.

To mitigate the drawback of the ON-OFF policy, many
policies have been proposed, such as s-staggered setup policy
[3], [4], delayed-off policy [5], [6], and sleep policy [7], [8].

The s-staggered policy restricts the number of setup servers
to s, leading to lower power consumption. To reduce delays
caused by setup processes, the delayed-off policy allows idle
time before turning off, while the sleep policy enables idle
servers to either shut down or go to sleep modes. Although
each of the above policies offers distinct benefits, they share
the drawbacks of wasted energy and delays due to the server’s
inability to process jobs during setup processes. To address
this issue, a setup queueing model with a power-saving policy,
where a server in power-saving mode can process a job and
setup simultaneously, was proposed in [9]. This policy allows
an idle server to remain in the power-saving mode and be set
up to its normal mode when a job arrives. While maintaining
idle servers in the power-saving mode requires some energy
rather than completely shutting them down, it reduces delay
by enabling servers to process jobs without waiting for setup
processes to complete.

Although queueing models with setup times have been
extensively investigated in the literature, [9] is the first to
consider such a power-saving policy in a multiserver setup
queueing model. Some closely related models proposed work-
ing vacation (WV) policies that allow servers to process
jobs during the vacations [10]–[12]. Servi and Finn [12] first
introduced an M/M/1 queue with WV, where the server works
at a lower service rate rather than completely stopping the
service during a vacation. This model was generalized to an
M/G/1 queue by Wu and Takagi [10]. In [11], a setup is
considered in a GI/M/1 queue with a single WV and vacation
interruption governed by the Bernoulli rule. Specifically, when
the server is in an off state, an arriving job initiates a setup
process to normal mode. Moreover, during a WV, if a job is
present, the server may either interrupt the vacation and switch
to normal mode with probability p or continue the vacation
with probability 1 − p. The model in [11] is similar to the
delayed-off model, where the system is closed if there is no
job when a vacation ends, whereas the power-saving model in
[9] keeps servers in power-saving mode even when the system
is empty. In WV models, a vacation starts when there is no
waiting job and ends after the vacation period. In contrast, a
setup process in the power-saving model occurs upon arrival,
continuing until service completion or the server switches to
normal mode. Hence, the vacation schedule is independent978-3-948377-03-8/19/$31.00 ©2025 ITC

ITC Li
bra

ry

of the queue length, whereas the setup rates depend on the
queue length, which makes the model with setup times more
complex.

Motivated by the applications of the power-saving modes
in data centers, this paper considers the same model as in
[9] but with a different perspective in terms of method for
performance evaluation of large-scale data centers. While [9]
uses the matrix geometric method to obtain the steady-state
probabilities and system performance, this paper employs
a generating function approach to derive the joint queue
length distribution. The advantage of the generating function
approach is that it provides exact expressions for the joint
stationary queue length distribution, generating functions, and
factorial moments of any order. The generating function
approach allows utilizing the special structure of the non-
homogeneous part of the Markov chain to have significant
reductions of the computational complexity in comparison
with existing methods in the literature [9], [13], [14].

The closest to our work in terms of the method is the
paper of Phung-Duc [15]. The author considers a common
multi-server queue with setup times, that is, M/M/k/Setup, and
obtains exact solutions for the joint stationary queue length
distribution of the model via the generating function approach
and matrix analytic method. The M/M/k/Setup model and
some variants are studied by Gandhi et al. [13] using the
recursive renewal reward method to determine the Laplace
transform of the response time and exact mean values. The
authors point out that applying the generating function ap-
proach to the model, even for a simple case, the M/M/2/Setup,
is incredibly complex. However, the use of the generating
function approach is made possible by exploiting a special
structure of the Markov chain in our model, which is even
more complex than the M/M/k/Setup. Furthermore, the gen-
erating function approach yields solutions of a form similar
to the form obtained by the Clear Analytic by Phases (CAP)
in [16] and allows for a speedy computation compared to the
matrix geometric method.

The rest of this paper is organized as follow. Section II
describes the model in detail and Section III presents the
analysis of the model via generating functions. Section IV is
devoted to performance measures and numerical experiments
are presented in Section V. Finally, concluding remarks are
presented in Section VI.

II. MODEL

A. Model description

We consider an M/M/c/Setup queueing model with the
power-saving policy defined in [9]. In this model, all idle
servers are in power-saving modes instead of shutting down.
Jobs arrive at the system according to a Poisson process
with rate λ. When a job arrives, an idle server (if any)
will process the job immediately and be set up to a normal
mode simultaneously. A server needs some setup time to
return to the normal mode. We assume that the setup times
are exponentially distributed with mean 1/α. Upon service
completion, if no jobs request service, the server switches to

Fig. 1. State-transition diagram.

the power-saving mode and cancels its ongoing setup process
if existing. Otherwise, it will immediately process the job in
its current mode, and the setup process will continue if it is in
the power-saving mode. During the power-saving mode, jobs
are served at a rate µs. When the server is in the normal mode,
jobs are served at a rate µ.

Let i denote the number of servers in the normal mode
and j denote the number of jobs in the system, respectively.
Then, the number of servers in the setup process is given by
min(j−i, c−i). We assume that servers in this system operate
under the First Come First Served (FCFS) policy. Fig. 1 shows
the state transition diagram.

B. Markov chain and notations

It can be seen that the stability condition for the system is
λ < cµ because all the servers are eventually in normal mode
if the number of jobs in the system is large enough. Let N(t)
and L(t) denote the number of servers in the normal mode
and the number of jobs in the system at time t, respectively.
In the current setting, the two-dimensional process {X(t) =
(N(t), L(t)); t ≥ 0} forms a Markov chain in the state space

S = {(i, j); i = 0, 1, . . . , c, j = i, i+ 1, . . .}.

Let

πi,j = lim
t→∞

P(N(t) = i, L(t) = j), (i, j) ∈ S.

We define generating functions Πi(z) =
∑∞
j=i πi,jz

j−i, for
i = 0, 1, . . . , c. We are interested in finding explicitly the
generating functions Πi(z), the factorial moments defined by
Π

(n)
i (1), where f (n)(x) denotes the n-th derivative of f(x),

and πi,j for (i, j) ∈ S.

ITC Li
bra

ry

Definition 1. For x ∈ R, the Pochhammer symbol is defined
as follows:

(x)n =

{
1 n = 0,∏n
k=1(x+ k − 1) n ∈ N = {1, 2, 3, . . .}.

III. GENERATING FUNCTION APPROACH

In this section, we present explicit expressions for the
generating functions and the factorial moments, which yields
exact solutions for the joint stationary queue length distribution
of our model. These expressions do not involve limits, and they
can be exactly calculated using a finite procedure.
The balance equations for the case i = 0 are given by

λπ0,0 = µsπ0,1 + µπ1,1, j = 0, (1)
(λ+ jα+ jµs)π0,j = λπ0,j−1 + (j + 1)µsπ0,j+1, (2)
j = 1, 2, . . . , c− 1,

(λ+ cα+ cµs)π0,j = λπ0,j−1 + cµsπ0,j+1, j ≥ c. (3)

Letting Π̂0(z) =
∑∞
j=c π0,jz

j , we have

Π0(z) =

c−1∑
j=0

π0,jz
j + Π̂0(z). (4)

Multiplying (3) by zj and summing over j ≥ c, we have

(−λz2 + (λ+ cα+ cµs)z − cµs)Π̂0(z) = λπ0,c−1z
c+1 (5)

− cµsπ0,czc.

Define f0(z) = −λz2 + (λ + cα + cµs)z − cµs. Because
f0(0) = −cµs < 0, f0(1) = cα > 0 and f0(∞) = −∞,
f0(z) has two roots z0, ẑ0 such that 0 < z0 < 1 < ẑ0. Then

z0 =
(λ+ cα+ cµs)−

√
(λ+ cα+ cµs)2 − 4λcµs
2λ

,

ẑ0 =
(λ+ cα+ cµs) +

√
(λ+ cα+ cµs)2 − 4λcµs
2λ

.

Substituting z = z0 into (5), we have

π0,c =
λ

cµs
z0π0,c−1. (6)

Rewriting (6), we have π0,c = b
(0)
c π0,c−1, where b(0)c = λ

cµs
z0.

Then, we derive a recursive scheme to determine π0,j for j =
1, 2, . . . , c, by the following lemma.

Lemma 1.

π0,j = b
(0)
j π0,j−1, 1 ≤ j ≤ c, (7)

where

b
(0)
j =

λ

λ+ jα+ jµs − (j + 1)µsb
(0)
j+1

,

for j = c− 1, c− 2, . . . , 1.

Proof. The proof of Lemma 1 is given in Appendix A.

The generating function Π̂0(z) is explicitly obtained as fol-
lows.

Π̂0(z) = zc
A0,0

ẑ0 − z
, (8)

where A0,0 = π0,c−1.

Furthermore, from (8), we obtain

π0,j =
A0,0

ẑ0

(
1

ẑ0

)j−c
, for j ≥ c.

Remark 1. At this moment, π0,j (j ≥ 1) are expressed in
terms of π0,0. In addition, π1,1 is expressed in terms of π0,j
(j ≥ 1) and then in terms of π0,0 via the balance of the flows
in and out the set of states {(0, j); j ≥ 0}, i.e.,

µπ1,1 =
∞∑
j=1

min(j, c)απ0,j .

Differentiating (5) n times yields

f0(z)Π̂
(n)
0 (z) + nf

′

0(z)Π̂
(n−1)
0 (z) +

n(n− 1)

2
f

′′

0 (z)Π̂
(n−2)
0 (z)

= λπ0,c−1(c− n+ 2)nz
c+1−n − cµsπ0,c(c− n+ 1)nz

c−n.

Substituting z = 1 into this equation yields

Π̂
(n)
0 (1) =

n(λ− cα− cµs)Π̂(n−1)
0 (1) + n(n− 1)λΠ̂

(n−2)
0 (1)

cα

+
λ

cα
π0,c−1(c− n+ 2)n −

µs
α
π0,c(c− n+ 1)n,

Π
(n)
0 (1) =

c−1∑
j=0

π0,j(j − n+ 1)n + Π̂
(n)
0 (1).

Now, we consider general cases where i = 1, 2, . . . , c − 1.
The balance equations are as follows.

(λ+ iµ)πi,i = απi−1,i + (iµ+ µs)πi,i+1 + (i+ 1)µπi+1,i+1,
(9)

(λ+ iµ+ (j − i)(µs + α))πi,j = (j − i+ 1)απi−1,j (10)
+ λπi,j−1 + (iµ+ (j − i+ 1)µs)πi,j+1, i+ 1 ≤ j ≤ c− 1,

(λ+ iµ+ (c− i)(µs + α))πi,j = (c− i+ 1)απi−1,j

+ λπi,j−1 + (iµ+ (c− i)µs)πi,j+1, j ≥ c. (11)

Letting Π̂i(z) =
∑∞
j=c πi,jz

j−i, we have

Πi(z) =
c−1∑
j=0

πi,jz
j−i + Π̂i(z). (12)

Multiplying (11) by zj−i and summing over j ≥ c, we have(
− λz2 + (λ+ iµ+ (c− i)(α+ µs))z

− (iµ+ (c− i)µs)
)

Π̂i(z) = (c− i+ 1)αΠ̂i−1(z) (13)

+ λπi,c−1z
c−i+1 − (iµ+ (c− i)µs)πi,czc−i.

Define fi(z) = −λz2 + (λ+ iµ+ (c− i)(α+ µs))z − (iµ+
(c − i)µs). Because fi(0) = −(iµ + (c − i + 1)µs) < 0,
fi(1) = (c− i)α > 0 and fi(∞) = −∞, fi(z) has two roots
zi, ẑi such that 0 < zi < 1 < ẑi. Then

ITC Li
bra

ry

zi =
(λ+ iµ+ (c− i)(µs + α)

2λ

−
√

(λ+ iµ+ (c− i)(µs + α))2 − 4λ(iµ+ (c− i)µs)
2λ

,

ẑi =
(λ+ iµ+ (c− i)(µs + α)

2λ

+

√
(λ+ iµ+ (c− i)(µs + α))2 − 4λ(iµ+ (c− i)µs)

2λ
.

Substituting z = zi into (13), we have

πi,c =
(c− i+ 1)αΠ̂i−1(zi) + λπi,c−1z

c−i+1
i

(iµ+ (c− i)µs)zc−ii

. (14)

Rewriting (14), we have

πi,c = a(i)c + b(i)c πi,c−1,

where

a(i)c =
(c− i+ 1)αΠ̂i−1(zi)

(iµ+ (c− i)µs)zc−ii

, b(i)c =
λzi

iµ+ (c− i)µs
.

Then, we derive a recursive scheme to determine πi,j for i+
1 ≤ j ≤ c by the following lemma

Lemma 2.

πi,j = a
(i)
j + b

(i)
j πi,j−1, j = i+ 1, i+ 2, . . . , c, (15)

where

a
(i)
j =

(j − i+ 1)απi−1,j + (iµ+ (j − i+ 1)µs)a
(i)
j+1

λ+ iµ+ (j − i)(µs + α)− (iµ+ (j − i+ 1)µs)b
(i)
j+1

,

(16)

b
(i)
j =

λ

λ+ iµ+ (j − i)(µs + α)− (iµ+ (j − i+ 1)µs)b
(i)
j+1

,

(17)

for i = c− 1, c− 2, . . . , i+ 1. Moreover, we have

0 < a
(i)
j , 0 < b

(i)
j <

λ

iµ+ (j − i)µs
.

The generating function Π̂i(z) (i = 1, 2, . . . , c−1) is explicitly
obtained by

Π̂i(z) = zc−i
i∑

j=0

Ai,j
ẑj − z

, (18)

where

Ai,j = (c− i+ 1)α
Ai−1,j ẑj
fi(ẑj)

,

Ai,i = πi,c−1 − (c− i+ 1)α
i−1∑
j=0

Ai−1,j ẑj
fi(ẑj)

.

Proof. The proof of Lemma 2 is given in Appendix B.

Remark 2. At this moment, πi,j(j ≥ i) is expressed in terms
of π0,0. In addition, πi+1,i+1 is expressed in terms of πi,j (j =

i+1, i+2, . . .) and then in terms of π0,0 via the balance of the
flows in and out the set of states {(m, j); 0 ≤ m ≤ i, j ≥ m},
i.e.,

(i+ 1)µπi+1,i+1 =
∞∑

j=i+1

min(j − i, c− i)απi,j .

Differentiating (13) n times yields

fi(z)Π̂
(n)
i (z) + nf

′

i (z)Π̂
(n−1)
i (z) +

n(n− 1)

2
f

′′

i (z)Π̂
(n−2)
i (z)

= (c− i+ 1)αΠ̂
(n)
i−1(z) + λπi,c−1(c− i− n+ 2)nz

c−i−n+1

− (iµ+ (c− i)µs)πi,c(c− i− n+ 1)nz
c−i−n.

Substituting z = 1 into this equation yields

Π̂
(n)
i (1) =

c− i+ 1

c− i
Π̂

(n)
i−1(1) +

λπi,c−1(c− i− n+ 2)n
(c− i)α

− πi,c(iµ+ (c− i)µs)(c− i− n+ 1)n
(c− i)α

+
n(λ− iµ− (c− i)(µs + α))Π̂

(n−1)
i (1)

(c− i)α

+
n(n− 1)λΠ̂

(n−2)
i (1)

(c− i)α
,

which is a recursive formula to compute all the factorial mo-
ments Π̂

(n)
i (1) (n ∈ N). It can be noted that Π̂

(0)
i (1) = Π̂i(1)

and Π̂
(n)
i−1(1) (n ∈ N) are already obtained.

Finally, we consider the case i = c which needs some
special treatment. Balance equations are given by

(λ+ cµ)πc,c = απc−1,c + cµπc,c+1, j = c, (19)
(λ+ cµ)πc,j = λπc,j−1 + απc−1,j + cµπc,j+1 j ≥ c+ 1.

(20)

Letting Π̂c(z) =
∑∞
j=c πc,jz

j−c, we have Πc(z) = Π̂c(z).

Multiplying (20) by zj−c and summing over j ≥ c yields

(−λz2 + (λ+ cµ)z − cµ)Π̂c(z) = αΠ̂c−1(z)− cµπc,c.
(21)

Define fc(z) = −λz2 + (λ+ cµ)z − cµ = (z − 1)(cµ− λz).
Then

fc(z)Π̂c(z) = αΠ̂c−1(z)− cµπc,c,

or,

Π̂c(z) =
αΠ̂c−1(z)− cµπc,c

z − 1

1

cµ− λz
(22)

=
α(Π̂c−1(z)− Π̂c−1(1))

z − 1

1

cµ− λz
.

Applying l’Hopital’s rule, we obtain

Π̂c(1) =
αΠ̂′c−1(1)

cµ− λ
.

ITC Li
bra

ry

Substituting Π̂c−1(z) in the form of (18) with i = c− 1 into
(22), we obtain

Π̂c(z) =
c∑
j=0

Ac,j
ẑj − z

, (23)

where

ẑc =
cµ

λ
, Ac,j = α

Ac−1,j ẑj
fc(ẑj)

, j = 0, 1, . . . , c− 1,

Ac,c = −α
c−1∑
j=0

Ac−1,j ẑj
fc(ẑj)

.

Differentiating (21) n times and rearranging the results and
then applying l’Hopital’s rule yields

Π(n)
c (1) =

αΠ̂
(n+1)
c−1 (1) + n(n+ 1)λΠ

(n−1)
c (1)

(n+ 1)(cµ− λ)
.

It can be noted that Π
(n+1)
c−1 (1) and Π

(0)
c (1) = Πc(1) are

already known.
At this moment, πi,j(j ≤ c) and the generating functions

Π̂i(z) (i = 0, 1, . . . , c) are expressed in terms of π0,0 which
is uniquely determined using the following normalization
condition.

Π0(1) + Π1(1) + . . .+ Πc(1) = 1.

Remark 3. We can obtain explicit results for the factorial
moments and the joint stationary distribution using Ai,j (c ≤
i ≤ j ≤ c) and ẑi (i = 0, 1, . . . , c) since expressions for the
generating functions are given. Furthermore, πi,j (j ≥ c) is
explicitly extracted from (8), (18) and (23).

Remark 4. If we use a general method to solve boundary
equations as the matrix analytic methods in [9], [14], the
computational complexity is O(c6). In contrast, the complexity
of the generating function approach is only of order

∑c
i=0 i =

c(c+ 1)/2 = O(c2). Indeed, we calculate Ai,j and πi,j (0 ≤
i ≤ j ≤ c) in the following order.

(0, 0)→ (0, 1)→ (0, 2)→ · · · → (0, c)

→ (1, 1)→ (1, 2)→ · · · → (1, c)

...

→ (c− 1, c− 1)→ (c− 1, c)

→ (c, c).

It should be noted that the recursive procedure for calculating
πi,j (0 ≤ i ≤ j ≤ c) involves only positive numbers, i.e., a(i)j
and b(i)j .

IV. PERFORMANCE MEASURES

In this section, we utilize the analytical results to numer-
ically evaluate the trade-off between performance and power
consumption, employing the existing cost function used in [9],
[17]–[19]. Accordingly, the power used when running at speed
s, P (s), is a function of the processor speed s, i.e., P (s) = sσ

β ,
where σ > 1 is a constant scaling factor and β controls the

relative cost of delay, called delay aversion in [9], [17]–[19].
In our analysis, we consider the two common performance
metrics in the literature, that are sum of energy and response
time ERWS [9], [17]–[19] and their product ERP [5], [7], to
analyze the performance-energy trade-off. Then, ERWS and
ERP are given by

ERWS = E[R] + E[P],

ERP = E[R] ∗ E[P],

where E[R] denotes the average response time, and E[P]
denotes the average power consumption per time unit.

The average number of jobs in the system E[L] is given by

E[L] =
∑

(i,j)∈S

jπi,j =
c∑
i=0

(Π
′

i(1) + iΠi(1)),

where
∑c
i=0 Π

′

i(1) represents the average number of jobs in
the system minus the average number of jobs served in normal
mode, and

∑c
i=0 iΠi(1) is the average number of servers in

normal mode.
From Little’s law, the average response time E[R] is given

by

E[R] =
1

λ
E[L].

The average power consumption per time unit E[P] is given
by

E[P] =
1

β

∑
(i,j)∈S

(
(µσs + φµσ)min(j − i, c− i)

+ ωµσsmax(c− j, 0) + µσi
)
πi,j

=
1

β

 c∑
i=0

c−1∑
j=i

(
(µσs + φµσ(j − i) + ωµσs (c− j)

)
πi,j

+(µσs + φµσ)
c−1∑
i=0

(c− i)Π̂i(1) + µσ
c∑
i=0

iΠi(1)

)
,

where φ and ω represent the power consumption during setup
and idle periods, respectively. It should be noted that min(j−
i, c− i) is the number of busy servers in power-saving mode
or the number of setup servers, max(c − j, 0) is the number
of idle servers in power-saving mode, and i is the number of
servers in normal mode.

For comparison, we consider the corresponding ON-OFF
model, that is, M/M/c/Setup model without the power-saving
policy. Then, the average response time and average power
consumption per time unit in this model are given by

ITC Li
bra

ry

E[R]ON-OFF =
1

λ

c∑
i=0

(Π
′

i(1) + iΠi(1)),

E[P]ON-OFF =
1

β

 c∑
i=0

c−1∑
j=i

φµσ(j − i)πi,j

+φµσ(c− i)Π̂i(1) + µσ
c∑
i=0

iΠi(1)

)
.

We assume that the power consumption required to set up
a server is equivalent to the power used for processing a job
at the server’s peak rate, i.e., φ = 1. As in [9], [17]–[19], we
consider the case σ = 2. Furthermore, we note that an idle
server consumes around 60% of the power consumption for
processing a job in the power-saving mode [2], allowing us to
establish ω = 0.6.

V. NUMERICAL EXAMPLES

In this section, we first compare the computational com-
plexity of obtaining performance measures by the generating
function method with that by the matrix geometric method
in [9]. We use the CPU: Intel(R) Core(TM) i5-8400 @ 2.81
GHz, RAM: 8 GB, Windows 10 Pro system, and Python 3.10.9
to test the running time. We then illustrate some numerical
examples to compare our model with the M/M/c/Setup model
to assess the effect of the power-saving policy.

TABLE I
RUNNING TIME OF ALGORITHMS USING THE GENERATING FUNCTION

APPROACH AND MATRIX GEOMETRIC METHOD (S).

Number of Generating function Matrix geometric

servers method (s) method (s) [9]

5 0.0004 0.0025

10 0.0012 0.0042

50 0.0145 0.1953

100 0.0348 10.9378

200 0.1157 402.9612

300 0.2392 memory limit exceeded error

500 0.6862 memory limit exceeded error

1000 2.7661 memory limit exceeded error

1500 6.1295 memory limit exceeded error

Table I shows the running times needed to calculate the
system performance based on the generating function and
matrix geometric methods. We observe that the generating
function approach has a much shorter running time than the
matrix geometric method, especially when the number of
servers is large. The matrix geometric method takes approx-
imately 1600 times longer than our method for the case of
c = 200. Specifically, given our computer configuration, the
matrix geometric method is not feasible for cases with many
servers, such as cases with more than 200 servers. However,

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
α

15

20

25

30

35

40

45

50

ER
W

S

ON-OFF: ρ=0.3
ON-OFF: ρ=0.7
Power-saving: ρ=0.3
Power-saving: ρ=0.7

Fig. 2. ERWS versus the setup rate α.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
α

25

50

75

100

125

150

175
ER

P
ON-OFF: ρ=0.3
ON-OFF: ρ=0.7
Power-saving: ρ=0.3
Power-saving: ρ=0.7

Fig. 3. ERP versus the setup rate α.

the generating function approach remains efficient even for
systems with many servers, requiring about 6 seconds to
process a case with 1500 servers. Therefore, the larger the
number of servers, the more efficient our method is.

To analyze the efficiency of the power-saving policy, we
compare it with the M/M/c/Setup model (ON-OFF model),
which operates without this policy. We define the traffic
intensity ρ = λ/(cµ). The ERWS and ERP metrics for our
model and the ON-OFF model are plotted as a function of
the setup rate α in Fig. 2 and Fig. 3, respectively. We set the
number of servers c = 30, the service rate µ = 1.2, µs = 0.5,
and the delay aversion value β = 1. We observe from Fig. 2
and Fig. 3 that the ERWS and ERP decrease with the setup rate
as expected. The power-saving policy leads to lower ERWS
and ERP levels when the setup time is large, while it may
cause higher ERWS and ERP levels with a short setup time.
Furthermore, the intercepts of the curves corresponding to

ITC Li
bra

ry

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
α

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

ER
W

S

ON-OFF
Power-saving: μμ=0.1
Power-saving: μμ=0.5
Power-saving: μμ=1

Fig. 4. ERWS versus the setup rate α(ρ = 0.5).

0.2 0.4 0.6 0.8 1.0
α

20

40

60

80

100

120

140

ER
P

ON-OFF
Power-saving: μμ=0.1
Power-saving: μμ=0.5
Power-saving: μμ=1

Fig. 5. ERP versus the setup rate α(ρ = 0.5).

ρ = 0.7 are shifted to the right relative to those associated
with ρ = 0.3. This observation suggests that power-saving
policy exhibits greater effectiveness under high traffic intensity
and vice versa. Indeed, under a low traffic regime, remaining
servers in the power-saving mode results in higher power
consumption than immediately turning them off and restarting
them when needed, especially when the setup time is short.

In Fig. 4 and Fig. 5, we plot the ERWS and ERP for the
same setting as Fig. 2 and Fig. 3 but under load ρ = 0.5 and
µs = 0.1, 0.5, 1. In the limit µs −→ 0 and α −→ ∞, our model
resembles the M/M/c/Setup model. These figures illustrate that
an appropriate value of the service rate µs can effectively
minimize the ERWS and ERP, while excessively high service
rates in the power-saving mode may be inefficient, especially
when the setup time is negligible. Our model exhibits greater
efficiency when trade-offs are evaluated using the ERP rather
than ERWS. Nevertheless, both the metrics indicate that higher

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
μs

80

90

100

110

120

130

140

ER
W
S

α=0.1
α=0.5
α=1

Fig. 6. ERWS versus the service rate µs.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
μs

50

60

70

80

90

100

ER
P

α=0.1
α=0.5
α=1

Fig. 7. ERP versus the service rate µs.

service rates µs effectively minimize the ERP and ERWS,
particularly in cases with prolonged setup times. In practice,
setup times in data centers often approximate 200 seconds,
while typical service times are less than 1 second [13]. This
substantial difference highlights the feasibility of adopting the
power-saving policy.

Fig. 6 and Fig. 7 illustrate ERWS and ERP as a function of
the service rate in power-saving mode µs, respectively. These
figures show that the ERWS and ERP decrease with the service
rate µs when µs is small and vice versa. Hence, the trade-
off between power consumption and delay is apparent, with
lower power consumption on the left-hand side, lower delay on
the right-hand side, and an optimum in between. We observe
from Fig. 6 and Fig. 7 that the optimal points of the ERP and
ERWS curves shift to the right as the setup rate α increases.
This observation indicates that a shorter setup time requires a
higher service rate in the power-saving mode to enhance the

ITC Li
bra

ry

50 100 150 200 250 300
c

0

10

20

30

40

50

60

Pe
rfo

rm
an

ce
 m

ea
su

re
s

E[L]
E[R]
ERP

Fig. 8. Performance measures versus the number of servers c (λ = 6).

probability of completing tasks before the setup process ends
and transitions to the normal mode, which consumes more
energy.

Finally, performance measures E[L], E[R], and ERP for our
model are plotted as a function of the number of servers c in
Fig. 8. The generating function approach makes it possible to
conduct extensive numerical experiments for large-scale sys-
tems with numerous servers, which are beyond the capabilities
of existing methods. We fix µ = 1.6, µs = 0.6, α = 0.5 and
λ = 6. We observe in Fig. 8 that the mean number of jobs in
the system E[L] and the mean response time E[R] decreases
with c as expected. Meanwhile, ERP decreases with c as c is
small and vice versa. This indicates the existence of an optimal
c that minimizes ERP, reflecting the trade-off between delay
and power consumption as c changes.

VI. CONCLUSIONS

This paper analyzed the M/M/c/Setup model incorporating
the power-saving policy for data centers. Using the generating
function approach, we derived exact expressions for the joint
stationary queue length distribution, generating functions, and
factorial moments of any order. This approach significantly
reduced computational complexity compared to existing meth-
ods, making it more practical for large-scale systems. Based on
the analytical results, we assessed the trade-off between system
performance and power consumption using an existing speed-
based cost function. We also conducted numerical experiments
to compare our model with the M/M/c/Setup model, which
allows us to evaluate the effectiveness of the power-saving
policy. The results showed that the power-saving policy leads
to a better balance between energy consumption and system
performance.

APPENDIX

A. Proof of Lemma 1

Proof. We use induction for the proof of this lemma. It is easy
to see that (7) is true for i = c. Assuming that (7) holds in
the case j + 1, i.e., π0,j+1 = b

(0)
j+1π0,j , for some j < c − 1.

Substituting this expression into (2) and rearranging the result
we derive (7).

B. Proof of Lemma 2

Proof. We use induction for the proof of (15) similar as in
Lemma 1. Next, we prove the inequalities. Lemma 2 holds in
the case j = c since

0 < a(i)c , 0 < b(i)c <
λ

iµ+ (c− i)µs
,

because 0 < zi < 1.
Assuming that 0 < a

(i)
j+1, 0 < b

(i)
j+1 <

λ
iµ+(j−i+1)µs

, we
have

λ+ iµ+ (j − i)(µs + α) > λ+ iµ+ (j − i)(µs + α)

− (iµ+ (j − i+ 1)µs)b
(i)
j+1 > iµ+ (j − i)(µs + α),

which together with (16) and (17) yield

0 <
λ

λ+ iµ+ (j − i)(µs + α)
< b

(i)
j

<
λ

iµ+ (j − i)(µs + α)
<

λ

iµ+ (j − i)µs
,

0 <
(j − i+ 1)απi−1,j + (iµ+ (j − i+ 1)µs)a

(i)
j+1

λ+ iµ+ (j − i)µs + (j − i)α
< a

(i)
j .

Next, we prove (18) using mathematical induction. Substitut-
ing

Π̂i−1(z) = zc−i+1
i−1∑
j=0

Ai−1,j
ẑj − z

into (13) and rearranging the result, we obtain (18). It should
be noted that (24) is used to decompose Π̂i(z) into simple
form.

1

(a− z)(b− z)
=

1

b− a

(
1

a− z
− 1

b− z

)
, ∀a 6= b. (24)

REFERENCES

[1] Electricity, I.E.A. Analysis and Forecast to 2026. IEA Report (URL:
https://www.iea.org/reports/electricity-2024) (2024)

[2] Barroso, L. & Hölzle, U. The case for energy-proportional computing.
Computer. 40, 33-37 (2007)

[3] Artalejo, J., Economou, A. & Lopez-Herrero, M. Analysis of a multi-
server queue with setup times. Queueing Systems. 51, 53-76 (2005)

[4] Phung-Duc, T. & Kawanishi, K. Delay performance of data-center queue
with setup policy and abandonment. Annals of Operations Research.
293, 269-293 (2020)

[5] Le-Anh, T. & Phung-Duc, T. Energy-performance tradeoffs in server
farms with batch services and setup times. Performance Evaluation. 168,
102468 (2025)

ITC Li
bra

ry

[6] Pender, J. & Phung-Duc, T. A law of large numbers for M/M/c/delayoff-
setup queues with nonstationary arrivals. Proceeding of 23rd Interna-
tional Conference on Analytical and Stochastic Modelling Techniques
and Applications, ASMTA 2016, Cardiff, UK, August 24-26, 2016. pp.
253-268 (2016)

[7] Gandhi, A., Harchol-Balter, M. & Kozuch, M. Are sleep states effective
in data centers?. 2012 International Green Computing Conference
(IGCC). pp. 1-10 (2012)

[8] Ma, Z., Guo, S. & Wang, R. The virtual machines scheduling strategy
based on M/M/c queueing model with vacation. Future Generation
Computer Systems. 138, 43-51 (2023)

[9] Le-Anh, T. & Phung-Duc, T. Analysis of multi-server queueing systems
with setup times and power-saving modes. Proceedings of 17th EAI
International Conference on Performance Evaluation Methodologies and
Tools, Milan, Italy, December 12-13 2024. (2024)

[10] Wu, D. & Takagi, H. M/G/1 queue with multiple working vacations.
Performance Evaluation. 63, 654-681 (2006)

[11] Tao, L., Liu, Z. & Wang, Z. The GI/M/1 queue with start-up period and
single working vacation and Bernoulli vacation interruption. Applied
Mathematics And Computation. 218, 4401-4413 (2011)

[12] Servi, L. & Finn, S. M/M/1 queues with working vacations
(M/M/1/WV). Performance Evaluation. 50, 41-52 (2002)

[13] Gandhi, A., Doroudi, S., Harchol-Balter, M. & Scheller-Wolf, A. Exact
analysis of the M/M/k/setup class of Markov chains via recursive
renewal reward. Proceedings of the ACM SIGMETRICS/International
Conference on Measurement and Modeling of Computer Systems. pp.
153-166 (2013)

[14] Van Houdt, B. & Leeuwaarden, J. Triangular M/G/1-type and tree-like
quasi-birth-death Markov chains. INFORMS Journal On Computing. 23,
165-171 (2011)

[15] Phung-Duc, T. Exact solutions for M/M/c/setup queues. Telecommuni-
cation Systems. 64, 309-324 (2017)

[16] Doroudi, S., Fralix, B. & Harchol-Balter, M. Clearing analysis on
phases: Exact limiting probabilities for skip-free, unidirectional, quasi-
birth-death processes. Stochastic Systems. 6, 420-458 (2017)

[17] Lu, X., Aalto, S. & Lassila, P. Performance-energy trade-off in data
centers: Impact of switching delay. 2013 22nd ITC Specialist Seminar
on Energy Efficient and Green Networking (SSEEGN). pp. 50-55 (2013)

[18] Phung-Duc, T., Rogiest, W. & Wittevrongel, S. Single server retrial
queues with speed scaling: Analysis and performance evaluation. Jour-
nal of Industrial and Management Optimization. 13, 1927-1943 (2017)

[19] Wierman, A., Andrew, L. & Tang, A. Power-aware speed scaling
in processor sharing systems. IEEE INFOCOM 2009. pp. 2007-2015
(2009)

ITC Li
bra

ry

