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Abstract—Many of today’s user applications are both time-
critical and computationally intensive. A typical example is
provided by assisted- and self-driving systems, where the data
collected by onboard sensors must be fused over network
computing elements, possibly using artificial intelligence (AI)
tools, to accurately reconstruct a vehicle’s environment in a
sufficiently short time to guarantee safe operations. Our study
considers this example, but also covers more general cases, and
extends to any system in which independent sources generate
time-critical queries for networked services. Obtaining good
performance in these cases requires the careful engineering
of both communication networks and computing facilities. In
addition, when multiple computation facilities are available to
run AI processes (in the fog, edge or cloud, or even on the device
itself), users running those time-critical and computationally
intensive applications experience the dilemma of which remote
resource to use so as to obtain results within the limited available
time budget. This does not necessarily imply the choice of the
fastest servers, as they may end up getting congested by multiple
requests. In this paper, we use optimization and game theory to
analyze the balance of user updates among remote AI engines,
as well as the choice of the intensity of user traffic, trying to
optimize the age of information (AoI) that users experience on
their time-critical AI-assisted processes. We show that targeting
the minimization of AoI leads to non-trivial server selection and
data injection policies, and that the unavoidable price of anarchy
of systems that enforce a distributed AI server selection can be
low, as long as autonomous adaptation of the individual injection
rate of the users is properly kept under control.

Index Terms—Age of information, AI, Game Theory, Dis-
tributed computing systems, Beyond 5G networks.
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I. INTRODUCTION

The digital ecosystem continues to grow in size and capa-

bilities, permeating our societies, and transforming the way we

work and live. Especially, communication networks now offer

high data rates and low latency, thereby enabling the imple-

mentation of quasi-real-time applications [1], [2]. Combined

with the diffusion of computing capabilities in the cloud / edge,

this paves the road for the integration of artificial intelligence

and machine learning (AI/ML) inferences in applications,

towards more and more sophisticated services [3]–[5].
The combination of these features makes it possible to think

of implementing AI-assisted latency-constrained services, like
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Fig. 1. AI-assisted application workflow

those permitting the control of complex distributed cyber-

physical systems [6]. A paradigmatic example is given by

self-driving systems [7], where the data collected by onboard

sensors must be fused, possibly using artificial intelligence

(AI) tools, to accurately reconstruct a vehicle’s environment

in sufficiently short time to guarantee safe operations.

The network and its computing facilities are expected to

succeed in coping with the time criticality of interactive

queries and system information updates along the entire

chain that connects users to network servers and delivers

answers/responses/status updates back to interested users, as

illustrated in Fig. 1. The complexity of this scenario requires

careful management, jointly handling the aspects that influence

system performance and user-perceived experience, possibly

avoiding centralized control, which would slow down a pro-

cess that is required to be timely [8], [9]. Moreover, the

presence of multiple steps within the decision process (namely,

the choice of the server and the frequency of update injection)

may suggest a layered approach, where separate decisions

are made, possibly with different approaches towards system

optimization, thereby resulting in different levels of efficiency.

We consider an AI-assisted cyber-physical system in which

users provide information (e.g., gathered by means of local

sensors on a vehicle) to one of the available shared AI engines

that interpret the sensed data and generate a response (e.g.,

by issuing warnings to the driver). For such a scenario, the

goal of our work is to analyze the importance of (i) server

selection policies [10], [11] (e.g., should a “local”, low-latency

less powerful nearby AI engine or a more powerful “remote”

AI engine be used, incurring the associated higher latency?)

and (ii) information update rates that feed the AI engines, i.e.,

how frequently should the inferences on the local or remote AI

engines be requested? Note that this last point may possibly978-3-948377-03-8/19/$31.00 ©2025 ITC
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Fig. 2. Queueing model of the system

involve competition with other similar sources [12], [13].

The primary metric we consider is the age of information

(AoI) [14], [15], whose original introduction was exactly for

vehicular networks [16]. This metric tells how quickly newly

gathered pieces of information are incorporated into the AI

engine system and used to modify the control of the cyber-

physical system (e.g., the assisted vehicle). More in general,

we aim at studying how users can parse, with the help of AI,

data about a process they observe and need to interpret and

act upon, based on the freshest possible information.

Therefore, our AoI evaluation does not just include time

needed to convey information updates (e.g., acquired images)

to the AI engine, but also the inference time and the time

needed to issue and deliver a status update from the AI engine

to the user (e.g., a cruise control warning or a confirmation that

there is no need to modify the cruise). There exist studies for

systems with similar characteristics, typically based on FCFS

M/M/1 queues, and sometimes extended to more complex

queueing systems [17]–[19]. However, unlike many AoI-based

studies [20], [21], our system features likely do not allow

the drop of user updates at the server’s queue, as different

updates might either belong to distinct users and/or carry

complementary information that cannot be neglected.

Our reference scenario, shown in Fig. 2, considers the

optimization of after-processing-AoI, where the MEC server

used for interpreting the data can be chosen as a close edge

server, possibly co-located with the base station connecting

the user, or a remote MEC facility with higher computational

capability but also located farther in the cloud. However, this

same choice is taken by multiple equivalent sources (i.e., all

the vehicles sending status updates). Therefore this becomes a

choice between two paths of different quality, where however

the one that is in principle better is typically chosen more

frequently; as a result, it may be subject to higher congestion,

which may degrade its performance to make it become the

worse one. Similar phenomena are known in the literature and

connected to the Pigou-Knight-Downs paradox [22]

Hence, building on AoI results for queueing systems, we

tackle combined server and inference rate selection strategies

in AoI-driven distributed systems. Specifically, we compare

selfish and Pareto-optimal choices for both where inference

should be run and how frequently, in order to keep user’s

awareness about the AI-assisted information acquisition pro-

cess as fresh as possible, so as to be able to react swiftly, when

needed. Our findings reveal that while a fully centralized sys-

tem achieves the lowest AoI, allowing selfish server selection

introduces only modest inefficiencies. Moreover, unsupervised

solutions, where server and inference rates are chosen selfishly,

emerge as viable alternatives, trading some efficiency for the

absence of central orchestration.

The rest of this paper is organized as follows. Section II

discusses previous related contributions. Section III presents

the system and the approach we used to study AoI. Section IV

introduces the different alternatives that we considered for AoI

optimization. Section V discusses the features of the system

simulator we developed to validate the theoretical findings.

Section VI presents and discusses numerical results. Finally,

Section VII reports conclusions and ideas for future work.

II. RELATED WORK

The concept of AoI was originally introduced and made

popular by the authors of [14], [16]. Since then, in the last

decade it has been often applied as a performance evaluation

instrument for real-time applications [15], which can lead to

devise AoI-oriented scheduling strategies or medium access

protocols [9], [23]–[25]. Other directions include the extension

of AoI to combine with semantic aspects to obtain, e.g.,

version AoI, age of context, or age of incorrect information

(AoII) [3], [5], [26], [27].

However, one of the earliest lines of research for AoI, al-

ready explored in the first seminal papers, was the application

to queueing systems, revisiting the traditional formulas of

queueing theory through the lens of a new performance metric

[18], [19]. Especially, references [13], [28], [29] consider

multiple information sources in a single queue, which is one

of the main foundations of our analysis.

Another aspect sometimes applied to AoI is game theory,

seen as a way of distributed systems to achieve a stable

operation point. Game theoretic approaches to AoI allow to

derive medium access procedures of multiple real-time sources

without a central controller [12], [30] as well as exploring

security and privacy issues at multiple layers of the protocol

stack [31]–[33]. However, it would be possible to apply game

theory, leveraging its analytical character, also within the

aforementioned line of research involving AoI in queueing

systems. Hints of this idea were already contained in [13],

since it was derived that the optimal allocation of the queue

data injection rate from multiple sources differs from their

Nash equilibrium. In [34], this was pushed further to evaluate

how the resulting anarchy is lowered by possible correlation

in the information content of the sources.

While all of this serves as the preliminary analytical

basement of our analysis, the present paper also relates to

game theoretical investigations exploring the problem of path

selection in a network by distributed agents [11]. In particular,

we look at the traditional line of comparison between routing

and server selection [35], [36]. Made popular mostly by

[37], the evaluations of the inefficiencies of selfish routing

connect to historical problems like the Pigou–Knight–Downs

and Braess paradoxes [22]. Even though selfish routing and

the price of anarchy (PoA) are sometimes explored from the
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standpoint of queueing theory [38]–[40], there are surprisingly

few investigations using AoI as a performance metric, possibly

due to the misalignment of the main research in the area,

the PoA in selfish routing being popular around the 2000s,

whereas AoI was started in the 2010s.

However, we argue that both lines of research can converge

in the study of computing architectures based on mobile edge

computing (MEC), which are strongly pushed forward by the

increase in AI-driven applications. MEC has become a critical

enabler for machine learning particularly in scenarios requiring

low latency and real-time data processing, such as autonomous

driving, smart healthcare, and industrial IoT [8], [10].

In this sense, it is particularly relevant that some recent

contributions, such as [41], [42], explore MEC as related to

AoI, and in particular [6] adapts the classic queueing formulas

for AoI from [13] to the context of processor sharing in a

MEC server. Our proposal, while taking inspiration from all

these ideas, combines them in an original way, especially

focusing on a game theoretic approach for server selection

in MEC, as in [11], where, however, the performance metric

was task completion probability within a deadline, and not

AoI. Instead, in this paper we apply the queueing theoretic

evaluations of [13], actually as revised by [6], [28], but on top

of these we apply a game theoretic approach as in [34]. All

of these contributions, however, just focus on AoI in a single

queue, whereas our analysis involves two different levels of

decision-making, both influenced by game theory, i.e., server

selection and the management of the individual users inside

the same queue. This clarifies that, while building on the

existing literature, the development is entirely original and,

additionally, able to obtain unforeseen conclusions in terms of

guidelines for the management of MEC systems.

III. SYSTEM MODEL AND ANALYSIS OF AOI

We consider a number N of distributed sources, acting with-

out coordination, sending status updates about their monitored

process. This can represent multiple application scenarios, e.g.,

autonomous driving, with multiple vehicles reporting ambient

information about their surroundings, the state of the traffic an

so on. These sources strive to minimize their individual AoI,

but the processing of their data is too heavy to be performed

locally, and therefore must be offloaded at a mobile edge

server, which will return an update for each received request.

When multiple MEC facilities are available, the choice of

which one to use depends on the overall computing power

of the facility, but also on the congestion experienced there.

Indeed, even a MEC with abundant computing power may not

be convenient if too many other sources choose it.

Thus, we consider two different MEC facilities whose

service rates are µ1 and µ2, respectively. The problem is

interesting when µ2/N < µ1 < µ2, i.e., the second facility is

faster if only one user is present, but a congested facility 2 is

slower than facility 1 with just one user. From a game theory

perspective, our offloading choice resembles that of a minority

game [43]. To illustrate our reasoning, we will refer in the

following to M/M/1 FCFS queues, which are the simplest way

to allow for independent sensing nodes to select adjustable

injection rates. However, in the numerical evaluations we

will validate different queueing systems, showing that similar

conclusions still hold true. For an M/M/1 FCFS queue with

service rate µ, where a single source injects data with rate λ,

the expression of the average AoI, ∆, is [14]:

∆ =
1

µ

(

1 +
1

ρ
+

ρ2

1− ρ

)

, (1)

where ρ = λ/µ is the queue load factor.

Moreover, if Ni multiple sources with data injection rates

λi,1, λi,2, . . . , λi,Ni
share an M/M/1 FCFS queue with service

rate µi, i ∈ {1, 2}, denoting ρi,j = λi,j/µi, the resulting

average AoI can be derived by extending (1), as discussed in

[28]. In the following, we will adopt the equivalent expression

derived in [2], which quantifies ∆i,j as the average AoI of the

jth source on the ith facility as

∆i,j=
1

µi

[

1− Si,j

(Ri−Si,jEi,j)(1−ρi,jEi,j)
+

1

1−Ri

+
Si,j

ρi,j

]

, (2)

where: Ei,j =
1 +Ri −

√

(1 +Ri)2 − 4Si,j

2Si,j

,

with Ri =
∑

j ρi,j and Si,j = Ri− ρi,j . Remarkably, in [13],

these two terms use the game theoretic notation of ρ and ρ−j ,

respectively, since they correspond to the total rate and the

total rate without source j, but we deviate from this notation

since we better highlight the different facilities with index i.
This expression leverages the superposition effect of Poisson

arrival processes from different sources.

Thus, we assume that, as the result of their independent

decision of which facility to use, the N sources are split

such that N1 nodes process their information at MEC facility

1, and N2 = N−N1 nodes offload it on MEC facility

2. Symmetry considerations imply that, if any optimization

process is applied, all sources sharing the same facility must

have the same injection rate, therefore, ρi,j = ρi,k for any

1 ≤ j, k ≤ Ni. Hence, we will drop the dependence on the

second index and consider ρi as a value chosen by all sources

offloading on the ith facility, and further evaluate Ri = Niρi
and Si,j = (Ni−1)ρi. If we substitute these conditions directly

into (2), we get an average AoI ∆i(Ni, ρi) for the Ni sources

joining the ith facility, all generating inference tasks with the

same individual factor ρi as

∆i(Ni, ρi)=
1

µi

[

(1−(Ni−1)ρi)/(1−ρiEi)

(Niρi−(Ni−1)ρiEi)
+Ni

1+ρi−Niρi
1−Niρi

]

,

with Ei =
1+Niρi−

√

(1+Niρi)2−4(Ni−1)ρi
2Niρi

. (3)

As pointed out in [13], [34], if Ni > 1 sources share the

same facility i, there are two fundamentally different ways

for them to determine their injection rate λi and therefore

ρi. First of all, the sources may choose the optimal value

of the individual load factor ρ∗(Ni) as the value minimizing

the average AoI as reported in (3), where we highlight the

dependence on Ni.
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However, this does not correspond to the Nash equilibrium

(NE) of independent selfish sources, which requires a more

complex reasoning. At the NE, sources seek for a value of

ρi where no unilateral improvement is possible [12], [30].

This corresponds to setting the value of ρ(NE)(Ni) to a local

maximum of (2) in the individual values of ρi,j .

The difference between the two maximization approaches,

i.e., optimal working point ρ∗(Ni) (opt) and Nash equilibrium

ρNE(Ni), can be described by the following equations:

opt : set ρi,j = x ∀j : 1 ≤ j ≤ Ni (4)

solve ρ∗i = argminx∆i(x,Ni) from (2)

NE : set ρi,j = x for j only (5)

solve ρ
(NE)
i = argminx∆i,j(x,Ni) from (1)

From an operational standpoint, various methods can be

used for minimization. We can use the interior point method

implemented within Matlab or, thanks to the analytical charac-

ter of the AoI expressions, compute the first-order derivatives

and set them to 0, as the minimizing value is never on

the boundaries. The difference is just in the order between

computing the argmin and equating ρi,j for all j. Note that

the second line of the NE procedure computes the same ρ
(NE)
i

for all j and therefore implicitly equates all of them. Also, in

the maximization, we should note that Ri actually depends

on ρi,j , but Si,j does not, being indeed equal to the sum of

the ρi,k for k ̸= j. In other words, the NE corresponds to the

choice of ρi,j that minimizes AoI for source j only, assuming

that the other sources k ̸= j are constant (even though, in

reality, all sources follow the same approach, and in the end

they get the same ρi,j anyway). This leads to a tragedy of the

commons effect [44] that gives ρi,j = ρ(NE)(Ni) ≥ ρ∗(Ni),
with equality holding only in the case of an individual source,

i.e., Ni = 1, in which case both approaches fall down to (1).

The last result can be interpreted as follows [13]. The best

choice of ρ in (1) to minimize AoI when a source is alone

is neither to never update (ρ = 0) nor to clog the facility

(ρ = 1), but to a value ρ∗ in between (which in an FCFS

M/M/1 queue is found as 0.531 [14]). If Ni sources are sharing

the facility, they cannot simply choose ρ∗/Ni, which would

give them the same total offered load as before, but they need

to increase from this value because they only get a fraction

1/Ni of the updates. Still, they stay away from congestion and

choosing Ri = 1 as this will give infinite AoI. However, the

marginal increase of ρi,j depends on whether the sources take

an optimal (virtually coordinated) or a selfish approach. The

optimal choice corresponds to assuming that any increase in

ρi,j is mirrored by all other sources; thus, one ought to simply

choose the optimum point in (3).

In contrast, the selfish approach takes the myopic standpoint

of increasing the individual ρi,j assuming that the other

ρi,k does not change (in other words, the congestion caused

by an increase is underestimated by a factor 1/Ni). This

suboptimal approach is the only one that can be supported

as a NE. Optimizing (3) does not provide an NE as each

source has an incentive for a unilateral deviation since, from

a selfish perspective, they can choose a higher ρi,j . These two

approaches to choosing the individual ρi,j , once the number

Ni of sources on the ith facility is set, ultimately reflect the

problem of server selection, as argued in the following.

IV. SERVER AND INFERENCE RATE SELECTION

The average AoI achieved at a given MEC facility depends

on the global load offered by all sources insisting there.

Therefore, the AoI is determined by two factors: (i) how many

sources connect to the facility and (ii) how frequently the

sources generate inference tasks.

If homogeneous sources generate homogeneous inference

requests, we can assume that Ni sources connected to the

same facility i use the same inference rate (thus adopt the same

ρi) and therefore observe the same average AoI ∆i(Ni, ρi).
However, sources can operate to achieve a global optimum

in terms of AoI, or rather act selfishly. This means that once

Ni is set, the value of ∆i can be computed through (3) but

obtaining two different values: ∆∗(Ni) as the minimal AoI

achieved by Ni sources obtained from the optimal ρ∗(Ni), or

∆(NE)(Ni) as the value corresponding to Ni selfish sources

that consequently choose ρ(NE)(Ni).
With the notation defined above, minimizing the overall

average AoI implies solving the following problem:

minimize
N1 ∆1 (N1, ρ1) +N2 ∆2 (N2, ρ2)

N
, (6)

s.t.: N1 +N2 = N,

0 < ρj < 1, j ∈ {1, 2}.

The formulated problem is, in general, non-linear and non-

convex because of the expression of the AoI reported in (3).

However, the separation of the variables implies that one can

simply find the solution for an integer n to

minimize
n∆1

(

n, ρ∗(n)
)

+(N−n)∆2

(

N−n, ρ∗(N−n)
)

N
,

s.t.: 0 ≤ n ≤ N.

To solve the above problem, we can test all possible non-

negative values of N1 and N2 that sum to N and consider their

AoI as derived optimally once the values of Ni are set. As a

side note, the value of ∆i in the problems above depends on

i because of the constant 1/µi term within the expression, but

instead ρ∗(n) does not depend on it, being normalized to µi.

We indicate this overall optimal solution as “Super-Best,” to

distinguish it from other approaches containing Nash equilibria

and partial optimizations that we describe next.

When a centralized optimization is not enforced, sources

independently select which facility to connect to, which deter-

mines N1 and N2. We treat this as a dynamic game of complete

information [45], which is a good way to model distributed

choices, yet with a different priority order.

In other words, we assume a game played by the sources

through two subsequent stages. In Stage 1, either facility 1 or

2 is chosen by each source individually and unbeknownst to

each other. This is a mere problem of server selection [36]. In
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fact, in our physical model, sources are free to move to another

facility if they find it more convenient. However, since we are

looking for subgame-perfect Nash equilibria [38], we will find

an allocation point where no source wants to deviate in Stage

1, that is, change facility. Subsequently, in Stage 2, the sources

observe the choices made in Stage 1 and adjust the inference

generation rate on their facility of choice, with full awareness

of the number of sources with which they are sharing the

facility. In practical cases, this number can be inferred from

measurements of perceived AoI or from minimal signaling.
This kind of game can be solved through the principle

of sequential rationality [45], dictating that rational players

can anticipate the outcome of subsequent stages and optimize

the choices in the earlier ones. In simpler scenarios, this

boils down to applying backward induction through Bellman’s

optimality principle [25]. We remark that we cannot simply

use this approach here, since the moves of the players are si-

multaneous in both stages. Thus, sequential rationality implies

that instead of an optimal working point, we play a NE [45].

Starting from Stage 2, as customarily sequential rationality

implies to begin from the last stage, we can infer that, once

the values of N1 and N2 are set, the sources will choose their

injection rates as ρ(NE)(Ni), i ∈ {1, 2}.
This outcome of Stage 2 can be anticipated in Stage 1 by

rational sources, without any ambiguity due to the uniqueness

of the NE. In general, finding the NE to play for the resulting

game, where the NE outcomes of Stage 2 are brought up to

Stage 1, is not trivial. Yet, we can leverage the principle that

rational players do not want to unilaterally deviate from a NE

[12]. This implies that the overall NEs of the dynamic game

ought to be the choice of N1 and N2 that satisfies

∆1

(

N1, ρ
(NE)(N1)

)

= ∆2

(

N2, ρ
(NE)(N2)

)

. (7)

However, note that N1 and N2 must be integer numbers,

thus in reality the above equality can only be approximated

and we can have two configurations that approximate the NE,

or, equivalently, two NEs of Stage 1 as the result of condition

(7), since the values of N1 and N2 can be rounded up or down.

Indeed, the idea behind this equation is that if one source sees

that the AoI is lower on the other facility, this would give

an option for a unilateral deviation that contradicts the NE.

In reality, this does not hold true if a granularity of 1 source

exists since it may be that

∆1

(

N1, ρ
(NE)(N1)

)

< ∆2

(

N2, ρ
(NE)(N2)

)

(8)

but ∆2

(

N2, ρ
(NE)(N2)

)

< ∆1

(

N1+1, ρ(NE)(N1+1)
)

.

In the following numerical evaluations of Section VI, we

will assume an implicit equilibrium selection for the better

case, but the simulation results may be affected by a granular

error due to this. We also remark that in light of the uniqueness

of the NE in Stage 2, the NE of the game must also be

subgame-perfect [45]. This approach, which supports both the

server selection scheme and the injection rate adaptation, being

fully distributed, originates from choosing the NE two times

in a row (at both stages), and therefore we will refer to it in

the following as “Nash-Nash.”

However, an intermediate approach is possible between fully

distributed and centralized selections for both decisions. If we

assume that, once joining facility i, the Ni sources connected

to it are controlled to enact a data injection rate that uses

ρ∗(Ni) instead of ρ(NE)(Ni), we can change (7) to

∆1

(

N1, ρ
∗(N1)

)

= ∆2

(

N2, ρ
∗(N2)

)

. (9)

This results in lower AoI (though not necessarily the same

N1:N2 split), as ∆i

(

Ni, ρ
∗(Ni)

)

< ∆i

(

Ni, ρ
(NE)(Ni)

)

.

This approach is denoted in the following as “Nash-Best,”

since the server selection is still performed in a selfish way,

i.e., through the indifference principle. From an implementa-

tion standpoint, this approach still requires centralized coordi-

nation, but only at the individual MEC facility level, whereas

the server selection itself is fully distributed. However, the

procedure may still be subject to Pigou-like paradoxes [22].

As a final remark, we mention that we derived the entire

computation by leveraging the formulas for an FCFS M/M/1

queue from [28], yet this is by no means restrictive as the

same conclusions, as well as the possibility of defining the

three approaches of “Super-Best,” ”Nash-Best,” or “Nash-

Nash,” would still hold true with different expressions for

∆i

(

Ni, ρ(Ni)
)

. In particular, an interesting element to con-

sider would be the presence of a fixed round trip delay di to

MEC facility i. In this case, all expressions of average AoI,

such as (1) or (3), increase by di. The role of network latency

when the facility is physically distant is indeed relevant,

although often neglected in analytical investigations [46]. For

this reason, in the following we will explicitly refer to a

scenario where facility 1 is interpreted as a local edge server

with relatively small µ1 but d1 ≈ 0, while facility 2 is located

in the cloud and more powerful, so that µ2 > µ1 but d2 > 0.

V. SIMULATOR

We developed a C++ event-based simulator to investigate

multiple configurations. Simulations aim to evaluate the over-

all AoI achievable with the three approaches described in

Section IV. We also want to expand the study beyond the

plain M/M/1 queue by also considering deterministic service

times and/or multiple servers in the same MEC facility.

The most relevant events that characterize the system be-

havior and that correspondingly determine the simulation runs

evolution are few: the generation of a query for a facility,

its arrival to the facility’s queue, the beginning of the query

processing, and its end. Events and their sequence in time are

handled through an event list, where events happening in the

near future are at the head of the list, while others follow

farther in the list as the event time increases.

An experiment requires simulating a single queue with an

infinite waiting room, a predefined number of processors and

service rate, and one or multiple vehicles sending inference

requests. The MEC facilities can be simulated in isolation,

since once the number of sources Ni is determined and their

request rate is known, they work independently. In particular,

the simulation results can be used to replace the expression

for ∆i(Ni, ρi) in (3).
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TABLE I
NUMERICAL EVALUATION PARAMETERS

Parameter Value

Number of vehicles 30
Processors (MEC facility 1) — p1 1
Processing rate (MEC facility 1) — µ1 [req/ms] 1
Processors (MEC facility 2) — p2 [1, 2, 10]
Processing rate (MEC facility 2) — µ2 [req/ms] [5, . . . 20]
RTT (Vehicle to MEC facility 1) — d1 [ms] ≃ 0
RTT (Vehicle to MEC facility 2) — d2 [ms] 15

Since in all cases we consider either M/M/ or M/D/ queues,

we take AI queries as independently generated at the sources

at the same rate λ, with Poisson distributed inter-arrival times.

Then, based on the generation time, AI queries join the queue,

where they are immediately served if any idle processor is

available or otherwise appended to the waiting line. When

jobs enter service, the processing time is sampled from the

probability density function of a random variable characteriz-

ing the service distribution, either exponential or deterministic.

When multiple processors are available, the serving processor

is chosen randomly. After processing a query, the AoI is

updated, cumulating the time between the generation time of

the previous request and the current time.

Each experiment requires multiple runs of the same con-

figuration until the confidence interval on the mean of the

target measure falls within the specified thresholds. Likewise,

each simulation runs until the standard deviation on the

collected measure falls within the predefined thresholds. For

the experiments reported in the next section, we set the run’s

threshold to 0.5% of the reference measure average, and the

one for the overall simulation to 1% of the same metric.

Knowing that the source population is finite and the server

selection implies exclusive access to either MEC facility

makes it simple to combine measures from different simu-

lations to obtain measures of the overall system. Indeed, the

overall average AoI is just weighted over the two different

MEC facilities with the numbers N1 and N2.

VI. NUMERICAL EVALUATION

We consider a setting in which sources of queries are located

on 30 vehicles that move, acquire images, and send them to

one of two MEC facilities, asking the AI agent in the MEC to

interpret the content of the images. The AI agents return their

interpretation and vehicles act accordingly.

We consider that one MEC facility is close to the users (e.g.,

running as a MEC application in 3GPP network elements in

proximity, at round-trip distance d1 ≃ 0), whereas the other

facility is reachable in a few milliseconds (e.g., farther apart

in the edge of the cellular network, at d2 = 15 ms). In what

follows, we will refer to “local” and “remote” facilities to refer

to them, and use indexes 1 and 2, respectively.

For the local facility, we only consider a single processor

(p1 = 1) with service rate µ1 = 1 req/ms. The remote

facility is more powerful and devotes p2 ≥ 1 processors to

serve incoming requests. The service rate at the remote MEC

Fig. 3. Number of users at the local server (N1, bottom three curves, with
solid line) and AoI in milliseconds (upper three curves, dashed lines) versus
the processing rate at the remote MEC facility µ2— analysis (lines) and
simulation (markers) with three alternative policies. Shaded areas represent
the effect of adding/subtracting one user to/from N1.

facility is µ2 ≥ µ1 and is equally divided among all available

processors, i.e., the service rate of individual processors is

µ2/p2. Both local and remote facilities have infinite queueing

capacity. Queries sent to AI engines by vehichles are issued

according to a Poisson process with rate λ. Table I summarizes

the parameters used in our numerical evaluations.

Figs. 3 to 7 were obtained for p2 = 1 at the remote server.

The figures show numerical results obtained by evaluating

Super-Best (optimal), Nash-Best and Nash-Nash solutions

computed numerically. They also display simulation points,

and, in the case of numerical evaluations of NEs, a shaded

area indicates how performance would change by moving one

source from a facility to another, due to the granularity of the

discrete number of sources, which possibly amplifies oscilla-

tions due to simulation noise. Thus, the shaded area allows

us to highlight the possible outcomes considering rounding

effects when moving from solutions in the continuum—the

model—to discrete solutions—the simulation.

Fig. 3 shows the average AoI and the number N1 of

query sources (vehicles) that process AI queries in the local

facility, as a function of the remote facility service rate µ2.

It is interesting to see that Nash-Best, which leaves the

server selection to the distributed choice of the individual

sources, but optimizes the inference update rate, leads to

more devices processing information in the local facility, with

respect to the Nash-Nash case. Instead, Nash-Nash leads to

more devices issuing AI queries to the remote facility, using

resources inefficiently, and obtaining the worst average AoI.

Among the three approaches, the number of vehicles choosing

to process information in the local facility decreases with

the increase of the remote facility capacity. By comparing

analytical and simulation results, we notice a very good match,

with simulation results always within the shaded area (i.e.,

within the granularity of the rounding). Specifically, the match

between the two sets of results is particularly good considering

N1, while slightly more noisy when looking at the average

AoI. This effect is easier to identify for Nash-Nash because
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Fig. 4. Mean AoI at the remote facility (N2= [1, 2, 10]) vs. offered load ρ2.

Fig. 5. PoA for the Nash-Best and Nash-Nash policies versus the processing
rate at the remote MEC facility µ2. The solid lines are the numerical
evaluation, and the points are the simulation results.

choosing between servers is much easier than finding the exact

load that leads to a Nash equilibrium point. Indeed, stochastic

fluctuations in service time and offered load at the facilities

may lead vehicles to send fewer updates, because of incurring

higher delays, than what expected from the theory.

Fig. 4 shows the average AoI that vehicles connected to the

remote facility experience as the load increases. The figure

reports three curves for 1, 2, and 10 vehicles connected

to the remote server. The curves are computed analytically,

considering an M/M/1 queue and the random latency to go

back and forth from the facility, whereas points next to or

on top of the curves represent simulations. The latter fit well

the AoI model presented in Section III, as expected. In the

figure, it is interesting to see that, for any selected aggregate

load of the server, the AoI performance degrades with an

increasing number of users. Moreover, the curves shown in

the figure are practically flat over large areas, which explains

why numerical tools might be prone to errors in the search for

NEs and optimal configurations.

Fig. 5 shows the consequent PoA, i.e., the ratio between

the average AoI of Nash-Nash or Nash-Best and the optimal

allocation (Super-Best) in Fig. 3. Simulations of Nash-Nash

show a lower PoA, since the selected issuing rate is slightly

lower than the one of the analysis, leading to a lower average

number of requests at the processors, either local or remote,

and shorter queues. Although PoA is not high for Nash-Nash,

Fig. 6. Offered load by one source at the local facility (1) vs. processing rate
at the remote MEC facility µ2. Solid lines are analytical, shaded areas depict
the granularity due to ±1 source and markers are simulation results.

Fig. 7. Offered load by one source at the remote facility (2) vs. processing
rate at the remote MEC facility µ2. Solid lines are analytical, shaded areas
gives the granularity due to ±1 source and the markers are simulation results.

as it ranges between 15% and 20%, introducing some control

on inference rate generation with Nash-Best helps to decrease

AoI substantially. Increasing the remote MEC capacity reduces

the impact of server selection on AoI, because more and

more vehicles will select the remote facility and the difference

between ρ(NE)(Ni) and the optimal ρ∗(Ni) becomes smaller.

When the advantage of offloading to the remote facility

becomes more evident, the query rate of vehicles becomes

less important, since the population of vehicles is constant and

also the average AoI, from a certain point onward, deteriorates

with the query rate. This explains why the gap between

Nash-Best and Nash-Nash diminishes with the capacity of the

remote facility. For both Nash-Nash and Nash-Best, a PoA

asymptotically converging at 1.1 can be interpreted as the

inherent AoI inefficiency of a Pigou-like server selection [22].

Figs. 6 and 7 show the load offered by single sources to

the two facilities as the capacity of the remote MEC varies,

for the three approaches discussed in this paper. From the two

plots, it is evident that the Nash-Nash solution with which a

source issues requests at higher pace on all available resources,

leading to higher inefficiency. Optimizing inference rate and

letting vehicles choose their MEC leads to higher exploitation

of the remote facility and lower load of local processing,

per each vehicle. Eventually, Super-Best optimizes the offered

traffic, preventing the remote facility from congestion, through

both an optimal selection of the injection rate and also sending
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Fig. 8. Age of Information of single and multiple server queues (1, 2 or
10 servers) versus the processing rate at the remote MEC facility µ2, with
exponential service rates.
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Fig. 9. Average AoI of single and multiple server queues (1, 2 or 10 servers)
versus the processing rate at the remote MEC facility µ2, with deterministic
service rates.

requests to the local server. This behavior is possible because

sources enforce query rate adaptation, so that when, e.g., the

number of sources on a facility increases, the load per source

tends to diminish. Indeed, although not shown in the figures,

we have observed that the aggregate load observed at the two

servers slowly grows at the local server and decreases at the

remote server as its capacity increases, with total utilization

values quite flat, of the order of 0.7-0.8 for Super-Best and

Nash-Best, and 0.9-0.95 for Nash-Nash.

In Fig. 8, we plot the average AoI obtained with different

settings at the remote facility versus the processing rate at the

remote MEC, µ2. For a given remote facility’s capacity µ2, we

increase the number of available processors, decreasing their

individual capacity accordingly. Overall, the trends remain

the same, with the Nash-Nash solution providing higher AoI

and Super-Best providing vehicles with fresher information.

However, it is worth noticing that the AoI increases as the

number of processors increases. This phenomenon becomes

more relevant as the number of processors increases; indeed,

a higher number of processors allows the reduction of the

waiting times of the first p2 arriving jobs, but the subsequent

service times will be substantially longer. In other words, one

single fast processor is more efficient than many parallel slow

processors also in terms of AoI.

In Fig. 9, we plot curves analogous to those in 8 but

in this case we use deterministic service times rather than

exponential. This reduces the variability of service latency,

which yields lower average sojourn times for queries in the

server queue. Hence, the average AoI decreases as well if

compared to results in Fig. 8.

Overall, the following takeaway messages can be drawn

from the results. When server selection must consider facilities

of comparable capacity (µ1 being no more than one order

of magnitude lower than µ2), the main effect differentiating

the three approaches is actually the injection rate of inference

requests, and a Nash-Best performance ends up in being rela-

tively close to the optimum, with a PoA below 1.1 indicating

an increase in average AoI of about 10%. This seems to

suggest that a distributed AI server selection is overall feasible,

as long as the individual injection rate of the sources joining

the same MEC facility is locally controlled to avoid tragedy of

the commons phenomena, where sources overload the system.

The latter can be achieved with some local coordination

without resorting to an overall centralized control.

Instead, when the more powerful facility (MEC 2, the

remote server) has significantly higher capacity, i.e., µ2 ≫ µ1,

most sources would like to join facility 2, which actually

worsens the effect of anarchy even for a Nash-Best approach.

In this case, indeed, the main contribution to PoA is the Pigou-

like selection, possibly subject to paradoxes when the choice of

one facility tends to become dominant over the other. However,

even in this case, where the Nash-Nash and the Nash-Best

approaches tend to converge, the PoA is still limited and

below 1.1, which once again confirms that a distributed server

selection may be acceptable in terms of average AoI.

VII. CONCLUSIONS

We analyzed server selection and inference rate adaptation

for users connected to AI-based networked services provided

by in-network computing facilities. We investigated the role

of resource orchestration on the achievable AoI, comparing

centralized, distributed, and mixed approaches, considering the

possible use case of assisted driving services. Our results show

that the system behavior is complex, but users may selfishly

choose their preferred processing location, as long as they

cooperate to use shared resources optimally. The analysis of

the PoA shows that a fully distributed approach incurs some

inefficiency, but the overall cost is limited and decreases with

the amount of available computing resources.

The results presented shed light on the design and im-

plementation of controls of cyber-physical systems through

networked computing facilities. They enable service providers

to understand costs and benefits of coordinated and uncoordi-

nated access to shared computational resources.
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