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Weakness of current Martingale bounds
» Martingale bounds usually consider the maximal value of a random walk, i.e.
W =max{X; +---+ X,,}
n>0
with increments
Xn = Sn =Ty

satisfying E[X,] < 0 for stability ((S),, being service times and (T),, being
inter-arrival times)

» W is the waiting time of an arbitrary job in steady state

» The technique used to construct tail bounds is based on the following observation
P[W > o] = P[T < 9]
with the stopping time
T:=min{n: X+ -+ X, >0}
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Weakness of current Martingale bounds

» Note that P[T = oco] > 0 since E[X,,] <0
» Now, to bound P[W > o] we can construct the Martingale
MTL — 69(X1+“‘+Xn)

where 6 > 0 satisfies ¢(#) := E[e?X] = 1 for the Moment-generating function
(MGF) ¢(0) of the increment X.

» Important properties of the stochastic process M,,:
> E[M, 41 — My|F,] =0, ¥n with F,, = o(Mi, ..., M,)
» E[My] = E[M~] if T is a finite stopping time; note that T is random (OST)
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Weakness of current Martingale bounds
» Now, we can construct the tail bound on W for a GI/G/1 system as
1 = E[M)]
= E[Mt17<o0]

_ E[ee(X1+---+XT)1T<OO]

> E[6601T<oo]
= %P[T < o0
= P7P[W > o]

» We now get the Kingman bound P[IW > o] < e~% with the specified 6 that
satisfies ¢(0) = 1
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Weakness of current Martingale bounds

» Now, we can construct the tail bound on W for a GI/G/1 system as
1 = E[M)]
- E[MT1T<OO]

= E[ T ]

> E[6601T<oo]
= P7P[T < o0
= P7P[W > o]
» We now get the Kingman bound P[IW > o] < e~% with the specified 6 that
satisfies ¢(0) = 1

» where does the error come from? (Observation from numerical evaluations: This
error becomes smaller at high utilization)
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Weakness of current Martingale bounds - refined result

» We can construct a refined tail bound on W as

E[e/t-+XT) 1 1> ig%K(fC)eeﬂP[T < o0

with K (z) == E[e?X1=2)| X > 2]

» We now get the Ross bound P[IW > o] < ~% which is sharper than

the previous bound as K(z) > 1Vz >0

1
inf, >0 K(x) €

» the “error” in the construction persists
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Coarse treatment of the overshoot

» The weakness of the Martingale bound (Kingman version shown in the following)
lies in the coarse treatment of the dependency here

E[eG(XH-'“-i-XT) 1T<oo] > E[6901T<oo]

» At the stopping time T the random walk overshoots o, i.e., X1 +---+ X7t >0

» Make use of the overshoot, i.e., by how much does the random walk exceed o
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Coarse treatment of the overshoot

» The weakness of the Martingale bound (Kingman version shown in the following)
lies in the coarse treatment of the dependency here

E[ee(X1+~“+XT) 1T<oo] > E[6901T<oo]

» At the stopping time T the random walk overshoots o, i.e., X1 +---+ X1 >0

» Make use of the overshoot, i.e., by how much does the random walk exceed o

» We aim for a new approach to obtain

P[W > o] =P[T < 0] < e % f(0)
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A new hope and a short detour

» Wald's Fundamental Identity: For a stopping time T and a non-negative random
variable Y (under some mild technical conditions) the following holds

Eo[Y17coo] = E[Y /X0 0(0)"T11_ ]

where Eg[-] is the expectation corresponding to Py which is a probability measure
defined from

Pn,Q(A) =E [

(X1t +Xn) (X1t +X7)
— 14 —/ —dP,,
A

oo oo
defined for every n € N and to A € F,, (change-of-measure).
» Note that if T =n and Y is measurable F,

Eq[Y] = E[y e/ (00 g(0) ™
and E[Y] = Eglye 0t (o)

I( { Leibniz
t ©j 2 Universitit
to9:4 | Hannover

© Amr Rizk | IKT LUH | Telescoping-Tightness Single-node Performance Bounds | 7/16



Breaking the dependency

» Now we can consider the dependency inside E[e?(X1++XT)11+_ ] by utilizing
WFI with Y =1

Ell7<c] = Egle X1+ XD 1
> The key is to observe that T" < 0o a.s. on the probability measure Py
» Using the convexity of ¢ and ¢(0) = ¢(f) = 1 we find that E»[X] > 0
> through Eo[X] = E[Xe¥] = ¢'(8) > 0

» The change of measure reverses the sign of the drift Ey[X] of the underlying
random walk

> thus Py[T' < o0] =1

> Now we can write Eg[e (X1t +XT) 11 _ ] = Eg[e0(X1t+X7)]
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Exact expression of P[IWW > o]
» The previous key observation allows us to express
P[W > o] = Egle /51 H31)] = ¢ =07 [e=0Fo]
using the definition of the overshoot

RU=X1+---+XT—U

» Given finite o, we express the overshoots's tail in terms of a union of disjoint
events as
n k
{Rg>x}:U ZXZ‘>O'+:L‘,1H1&X X, <o

: <k<n—14
n>1 (i=1 =1

for x > 0.

» Now we only need to compute Eg[e=9%%] |
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Exact expression of P[IWW > o]

Theorem
The waiting time distribution satisfies

P[W > o] =e % (1 - Zgn(0)>

for all o > 0, where gn(c) > 0 are

ga(0) = E[ (/2% =) 17, | vn > 1

= Ey [(1 - 69<0*Z?=1Xi)) 1T:n} Vn >1

» Upper bounds on P[W > o] follow by taking any number of terms g, (o).
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Proof sketch
Fix o >0

1
Egle 0Re] = / Pole"Fr > yldy
0

1
=1- / Po[R, > z]fe %%dz
0

=1- PQ[RO- > Z]
=1- Zgn(a)
n=1

» The first step follows by rearrangement and the second follows from observing
that Z is an exponential random variable with parameter 6.

» The last step follows from the elementary expansion of the overshoot tail in terms
of a union of disjoint events
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How do we obtain g,(c)? Per expansion of R,

n k
og)=P X; >0+ Z, max X, <o
gn( ) 0 Z % + ’lgkgn—l : i
=1 =1
——
=U =V

=E [60U1U>U+Z7VSJ:| (rewriting Egp in terms of E)

=E [1V§UE |:€9U1U>g+z|fn” (1y <o is measurable wrt. Fp)

» Term manipulation and similar arguments finds the conditional expectation

E |:66U1U>U+Z‘]:n} =1u>e (69U - 69”)

leé;ii(nffg)zE [(eez?ﬂxi - 69”) 1{U>07V<0}} =E [(6621@:1)@ - 690) 1T:n:|
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How do we compute g, (0)?

Given gn(o)=E [(ee Dim X _ 690> 1T:n]

» Observe the repetitive structure when ascending in n: First, one can compute

g1(0)=E [(eeXl - 60”> 1X1>a}

» Now one can write g, (o) recursively by conditioning in terms of g,_1 as
gn () = [eXH 1, < E[(e" X250 — Ao X)1 )

=E [exllxlgagn—l(a - Xl)]

» The key to this recursion is computing the con%itional expectation on X7 utilizing
n

the event A {Z Xi >0 — X1, max Xi S g — Xl}

2<k<n—1+4
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Numerical Example: M/D/1 System

Consider an M/D/1 queue with T}, ~ exp(A) and deterministic service time S.

For o < S, we compute g1(0), g2(0) to obtain the following bounds

» Using 1 term: o’
PW >o0]<1-— 0 ~Ms-0) -
o A+0 202

» Using 2 terms: 10°

P[W > U] < 1_(1+056795—67295’)67)‘(2ng) o 2 a 6 8 10
» We observe that the gradual improvements appear to decay exponentially

» We conjecture that the dominant g,, terms are the first ones due to the positive
drift
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Conclusion

» We reformulate single node queueing models, first, for GI/G/1 then for AR/G/1
and Markov fluid queues (in the paper)

» Telescoping-Tightness of the computed bounds through a cutoff Zle gn(0)

» Find suitable change-of-measure to reverse the sign of the expected increment
E[X] (slightly different construction for Gl/-/1 and Markov-modulated ones)

» Some models (e.g. M/D/1) have closed form solutions (rare & num. unstable)
» Numerical results show
» that the first few g, (o) terms are sufficient

» non-monotonic behavior in o (construction of g, (o) for given o)

» Open question: Given any specific queueing model, is there a K such that one
can analytically bound }° . - gn(0)?
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