

Telescoping-Tightness Single-node Performance Bounds

Amr Rizk

Joint work with F. Ciucu and S. Mehri Published as: On Ultra-Sharp Queueing Bounds: In Proc. of IEEE INFOCOM 2024

Institute of Communications Technology Leibniz University Hannover

► Martingale bounds usually consider the maximal value of a random walk, i.e.

$$W = \max_{n \ge 0} \left\{ X_1 + \dots + X_n \right\}$$

with increments

$$X_n = S_n - T_n$$

satisfying $E[X_n] < 0$ for stability ((S)_n being service times and (T)_n being inter-arrival times)

- $\blacktriangleright\ W$ is the waiting time of an arbitrary job in steady state
- ► The technique used to construct tail bounds is based on the following observation

$$\mathsf{P}[W > \sigma] = \mathsf{P}[\mathsf{T} < \infty]$$

with the stopping time

$$\mathsf{T} \coloneqq \min\{n : X_1 + \dots + X_n > \sigma\}$$

▶ Now, to bound $P[W > \sigma]$ we can construct the Martingale

$$M_n = e^{\theta(X_1 + \dots + X_n)}$$

where $\theta > 0$ satisfies $\phi(\theta) \coloneqq \mathsf{E}[e^{\theta X}] = 1$ for the Moment-generating function (MGF) $\phi(\theta)$ of the increment X.

- Important properties of the stochastic process M_n :
 - $\mathsf{E}[M_{n+1} M_n | \mathcal{F}_n] = 0, \ \forall n \text{ with } \mathcal{F}_n = \sigma(M_1, \dots, M_n)$
 - ► $E[M_0] = E[M_T]$ if T is a finite stopping time; note that T is random (OST)

▶ Now, we can construct the tail bound on W for a GI/G/1 system as

$$\begin{split} \mathbf{1} &= \mathsf{E}[M_0] \\ &= \mathsf{E}[M_\mathsf{T} \mathbf{1}_{\mathsf{T} < \infty}] \\ &= \mathsf{E}[e^{\theta(X_1 + \dots + X_\mathsf{T})} \mathbf{1}_{\mathsf{T} < \infty}] \\ &\geq \mathsf{E}[e^{\theta \sigma} \mathbf{1}_{\mathsf{T} < \infty}] \\ &= e^{\theta \sigma} \mathsf{P}[\mathsf{T} < \infty] \\ &= e^{\theta \sigma} \mathsf{P}[W > \sigma] \end{split}$$

▶ We now get the Kingman bound $\mathsf{P}[W > \sigma] < e^{-\theta\sigma}$ with the specified θ that satisfies $\phi(\theta) = 1$

Leibniz Universität Hannover

• Now, we can construct the tail bound on W for a GI/G/1 system as

$$\begin{split} \mathbf{1} &= \mathsf{E}[M_0] \\ &= \mathsf{E}[M_\mathsf{T} \mathbf{1}_{\mathsf{T} < \infty}] \\ &= \mathsf{E}[e^{\theta(X_1 + \dots + X_\mathsf{T})} \mathbf{1}_{\mathsf{T} < \infty}] \\ &\geq \mathsf{E}[e^{\theta \sigma} \mathbf{1}_{\mathsf{T} < \infty}] \\ &= e^{\theta \sigma} \mathsf{P}[\mathsf{T} < \infty] \\ &= e^{\theta \sigma} \mathsf{P}[W > \sigma] \end{split}$$

- ▶ We now get the Kingman bound $P[W > \sigma] < e^{-\theta\sigma}$ with the specified θ that satisfies $\phi(\theta) = 1$
 - where does the error come from? (Observation from numerical evaluations: This error becomes smaller at high utilization)

 \blacktriangleright We can construct a refined tail bound on W as

$$\mathsf{E}[e^{\theta(X_1+\dots+X_{\mathsf{T}})}\mathbf{1}_{\mathsf{T}<\infty}] \ge \inf_{x\ge 0} K(x)e^{\theta\sigma}\mathsf{P}[\mathsf{T}<\infty]$$

with $K(x) \coloneqq \mathsf{E}[e^{\theta(X_1-x)}|X_1 \ge x]$

- We now get the Ross bound $P[W > \sigma] < \frac{1}{\inf_{x \ge 0} K(x)} e^{-\theta\sigma}$ which is sharper than the previous bound as $K(x) \ge 1 \ \forall x \ge 0$
- ▶ the "error" in the construction persists

Coarse treatment of the overshoot

The weakness of the Martingale bound (Kingman version shown in the following) lies in the coarse treatment of the dependency here

$$\mathsf{E}[e^{\theta(X_1+\dots+X_{\mathsf{T}})}\mathbf{1}_{\mathsf{T}<\infty}] \ge \mathsf{E}[e^{\theta\sigma}\mathbf{1}_{\mathsf{T}<\infty}]$$

- At the stopping time T the random walk overshoots σ , i.e., $X_1 + \cdots + X_T > \sigma$
- \blacktriangleright Make use of the overshoot, i.e., by how much does the random walk exceed σ

Coarse treatment of the overshoot

The weakness of the Martingale bound (Kingman version shown in the following) lies in the coarse treatment of the dependency here

$$\mathsf{E}[e^{\theta(X_1+\dots+X_{\mathsf{T}})}\mathbf{1}_{\mathsf{T}<\infty}] \ge \mathsf{E}[e^{\theta\sigma}\mathbf{1}_{\mathsf{T}<\infty}]$$

- At the stopping time T the random walk *overshoots* σ , i.e., $X_1 + \cdots + X_T > \sigma$
- Make use of the overshoot, i.e., by how much does the random walk exceed σ
- ► We aim for a new approach to obtain

$$\mathsf{P}[W > \sigma] = \mathsf{P}[\mathsf{T} < \infty] \le e^{-\theta\sigma} f(\sigma)$$

A new hope and a short detour

Wald's Fundamental Identity: For a stopping time T and a non-negative random variable Y (under some mild technical conditions) the following holds

$$\mathsf{E}_{\theta}[Y1_{\mathsf{T}<\infty}] = \mathsf{E}[Ye^{\theta(X_1 + \dots + X_{\mathsf{T}})}\phi(\theta)^{-\mathsf{T}}1_{\mathsf{T}<\infty}]$$

where $E_{\theta}[\cdot]$ is the expectation corresponding to P_{θ} which is a probability measure defined from

$$\mathsf{P}_{n,\theta}(A) = \mathsf{E}\left[\frac{e^{\theta(X_1 + \dots + X_n)}}{\phi(\theta)^n} \mathbf{1}_A\right] = \int_A \frac{e^{\theta(X_1 + \dots + X_\mathsf{T})}}{\phi(\theta)^n} d\mathsf{P}_n$$

defined for every $n \in \mathbf{N}$ and to $A \in \mathcal{F}_n$ (change-of-measure).

▶ Note that if T = n and Y is measurable \mathcal{F}_n $\mathsf{E}_{\theta}[Y] = \mathsf{E}[Ye^{\theta(X_1 + \dots + X_n)}\phi(\theta)^{-n}]$ $\mathsf{E}[Y] = \mathsf{E}_{\theta}[Ye^{-\theta(X_1 + \dots + X_n)}\phi(\theta)^n]$

and

Leibniz Iniversität lannover

Breaking the dependency

Leibniz Universität Hannover

Now we can consider the dependency inside $E[e^{\theta(X_1+\dots+X_T)}1_{T<\infty}]$ by utilizing WFI with Y = 1

$$\mathsf{E}[1_{\mathsf{T}<\infty}] = \mathsf{E}_{\theta}[e^{-\theta(X_1 + \dots + X_{\mathsf{T}})}1_{\mathsf{T}<\infty}]$$

- ▶ The key is to observe that $T < \infty$ a.s. on the probability measure P_θ
 - Using the convexity of ϕ and $\phi(0) = \phi(\theta) = 1$ we find that $\mathsf{E}_{\theta}[X] > 0$

• through
$$\mathsf{E}_{\theta}[X] = \mathsf{E}[Xe^{\theta X}] = \phi'(\theta) > 0$$

- The change of measure reverses the sign of the drift $E_{\theta}[X]$ of the underlying random walk
 - thus $\mathsf{P}_{\theta}[T < \infty] = 1$

► Now we can write
$$\mathsf{E}_{\theta}[e^{-\theta(X_1+\dots+X_T)}\mathbf{1}_{\mathsf{T}<\infty}] = \mathsf{E}_{\theta}[e^{-\theta(X_1+\dots+X_T)}]$$

Exact expression of $P[W > \sigma]$

$$\mathsf{P}[W > \sigma] = \mathsf{E}_{\theta}[e^{-\theta(X_1 + \dots + X_{\mathsf{T}})}] = e^{-\theta\sigma}\mathsf{E}_{\theta}[e^{-\theta R_{\sigma}}]$$

using the definition of the overshoot

$$R_{\sigma} = X_1 + \dots + X_{\mathsf{T}} - \sigma$$

Given finite σ, we express the overshoots's tail in terms of a union of disjoint events as

$$\{R_{\sigma} > x\} = \bigcup_{n \ge 1} \left\{ \sum_{i=1}^{n} X_i > \sigma + x, \max_{1 \le k \le n-1} \sum_{i=1}^{k} X_i \le \sigma \right\}$$

for x > 0.

Leibniz Universität Hannover

▶ Now we only need to compute $E_{\theta}[e^{-\theta R_{\sigma}}]$!

Exact expression of $P[W > \sigma]$

Theorem The waiting time distribution satisfies

$$\mathsf{P}[W > \sigma] = e^{-\theta\sigma} \left(1 - \sum_{n=1}^{\infty} g_n(\sigma) \right)$$

for all $\sigma > 0$, where $g_n(\sigma) \ge 0$ are

Leibniz Universität Hannover

$$g_{n}(\sigma) \coloneqq \mathsf{E}\left[\left(e^{\theta \sum_{i=1}^{n} X_{i}} - e^{\theta \sigma}\right) \mathbf{1}_{\mathsf{T}=n}\right] \ \forall n \ge 1$$
$$= \mathsf{E}_{\theta}\left[\left(1 - e^{\theta(\sigma - \sum_{i=1}^{n} X_{i})}\right) \mathbf{1}_{\mathsf{T}=n}\right] \ \forall n \ge 1$$

• Upper bounds on $P[W > \sigma]$ follow by taking any number of terms $g_n(\sigma)$.

Institut für Kommunikations-Technik

Proof sketch

Leibniz Universität Hannover

Fix $\sigma \geq 0$

$$\begin{aligned} \mathsf{E}_{\theta}[e^{-\theta R_{\sigma}}] &= \int_{0}^{1} \mathsf{P}_{\theta}[e^{-\theta R_{\sigma}} > y] dy \\ &= 1 - \int_{0}^{1} \mathsf{P}_{\theta}[R_{\sigma} > z] \theta e^{-\theta z} dz \\ &= 1 - \mathsf{P}_{\theta}[R_{\sigma} > Z] \\ &= 1 - \sum_{n=1}^{\infty} g_{n}(\sigma) \end{aligned}$$

- The first step follows by rearrangement and the second follows from observing that Z is an exponential random variable with parameter θ .
- The last step follows from the elementary expansion of the overshoot tail in terms of a union of disjoint events

How do we obtain $g_n(\sigma)$? Per expansion of R_{σ}

Leibniz Universität Hannover

$$\begin{split} g_n(\sigma) &= \mathsf{P}_{\theta} \left(\underbrace{\sum_{i=1}^n X_i > \sigma + Z}_{:=U}, \underbrace{\max_{1 \leq k \leq n-1} \sum_{i=1}^k X_i}_{:=V} \leq \sigma \right) \\ &= \mathsf{E} \left[e^{\theta U} \mathbf{1}_{U > \sigma + Z, V \leq \sigma} \right] \text{ (rewriting } \mathsf{E}_{\theta} \text{ in terms of } \mathsf{E}) \\ &= \mathsf{E} \left[\mathbf{1}_{V \leq \sigma} \mathsf{E} \left[e^{\theta U} \mathbf{1}_{U > \sigma + Z} | \mathcal{F}_n \right] \right] \text{ (} \mathbf{1}_{V \leq \sigma} \text{ is measurable wrt. } \mathcal{F}_n \text{)} \end{split}$$

▶ Term manipulation and similar arguments finds the conditional expectation

$$\mathsf{E}\left[e^{\theta U}\mathbf{1}_{U > \sigma + Z} | \mathcal{F}_n\right] = \mathbf{1}_{U > \sigma}\left(e^{\theta U} - e^{\theta \sigma}\right)$$

leading to

$$g_n(\sigma) = \mathsf{E}\left[\left(e^{\theta \sum_{i=1}^n X_i} - e^{\theta\sigma}\right) \mathbf{1}_{\{U > \sigma, V < \sigma\}}\right] = \mathsf{E}\left[\left(e^{\theta \sum_{i=1}^n X_i} - e^{\theta\sigma}\right) \mathbf{1}_{\mathsf{T}=n}\right]$$

.

How do we *compute* $g_n(\sigma)$?

Given

Leibniz Universität Hannover

$$g_n(\sigma) = \mathsf{E}\left[\left(e^{\theta \sum_{i=1}^n X_i} - e^{\theta\sigma}\right) \mathbf{1}_{\mathsf{T}=n}\right]$$

• Observe the repetitive structure when ascending in n: First, one can compute

$$g_1(\sigma) = \mathsf{E}\left[\left(e^{\theta X_1} - e^{\theta \sigma}\right) \mathbf{1}_{X_1 > \sigma}\right]$$

▶ Now one can write $g_n(\sigma)$ recursively by conditioning in terms of g_{n-1} as

$$g_{n}(\sigma) = \mathsf{E} \left[e^{X_{1}} 1_{X_{1} \leq \sigma} \mathsf{E}[(e^{\theta(X_{2} + \dots + X_{n})} - e^{\theta(\sigma - X_{1})}) 1_{A} | X_{1}] \right]$$
$$= \mathsf{E} \left[e^{X_{1}} 1_{X_{1} \leq \sigma} g_{n-1}(\sigma - X_{1}) \right]$$

► The key to this recursion is computing the conditional expectation on X_1 utilizing the event A $\{\sum_{i=0}^{n} X_i > \sigma - X_1, \max_{2 \le k \le n-1} \sum_{i=0}^{k} X_i \le \sigma - X_1\}$

Numerical Example: M/D/1 System

Consider an M/D/1 queue with $T_n \sim \exp(\lambda)$ and deterministic service time S.

For $\sigma < S$, we compute $g_1(\sigma), g_2(\sigma)$ to obtain the following bounds

- ▶ We observe that the gradual improvements appear to decay exponentially
- \blacktriangleright We conjecture that the dominant g_n terms are the first ones due to the positive drift

Conclusion

- ► We reformulate single node queueing models, first, for GI/G/1 then for AR/G/1 and Markov fluid queues (in the paper)
- **Telescoping-Tightness** of the computed bounds through a cutoff $\sum_{n=1}^{K} g_n(\sigma)$
- ► Find suitable change-of-measure to reverse the sign of the expected increment E[X] (slightly different construction for Gl/·/1 and Markov-modulated ones)
- Some models (e.g. M/D/1) have closed form solutions (rare & num. unstable)
- Numerical results show
 - that the first few $g_n(\sigma)$ terms are sufficient
 - non-monotonic behavior in σ (construction of $g_n(\sigma)$ for given σ)
- ▶ **Open question:** Given any specific queueing model, is there a K such that one can analytically bound $\sum_{n>K} g_n(\sigma)$?