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[BBLC18]

Theorem

Let t ≥ 0. Consider a system S that arbitrarily multiplexes two
flows f1 and f2, where the arrivals of f2, A2, are constrained by α2.
Further, assume that S guarantees a min-plus service curve β to
the aggregate of the flows. Then, the leftover service

ξ(t) := β(t)− α2(t)

is a service curve for flow f1.
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Residuation Under (Min-Plus) Service Process

Theorem

Consider two arrival processes A1,A2, that share a server with a
min-plus service process S . Further, we assume A1 to be the
arrivals of the foi and an arbitrary multiplexing between the
arrivals. Then, the foi sees a residual min-plus service process

ξ(s, t) = S(s, t)− A2(s, t)

for all 0 ≤ s ≤ t.
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Residuation Under (Min-Plus) Service Process

Theorem

Consider two arrival processes A1,A2, that share a server with a
min-plus service process S . Further, we assume A1 to be the
arrivals of the foi and an arbitrary multiplexing between the
arrivals. Then, the foi sees a residual min-plus service process

ξ(s, t) = S(s, t)− A2(s, t)

for all 0 ≤ s ≤ t.

The negativity of the service process poses a similar problem

In SNC, we still require the server to be strict in multiple flows
scenarios
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Residuation Under (Min-Plus) Service Process

How does one deal with ”lazyness” of the service?
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Residuation Under (Min-Plus) Service Process

How does one deal with ”lazyness” of the service?

One needs some sort of guarantee on the incoming traffic
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Generalized Delay Bound

Guarantee a minimal amount of traffic in the system

Achieved through the assumption of a minimal arrival curve α

Leverage this information to derive a new delay bound
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Guarantee a minimal amount of traffic in the system

Achieved through the assumption of a minimal arrival curve α

Leverage this information to derive a new delay bound

Theorem

Let an arrival process A traverse a system S. Further, let the
arrivals be constrained by maximal arrival curve α ∈ F↑

0 and

minimal arrival curve α ∈ F↑
0 , and let the system offer a service

curve ξ ∈ F↑
≤0. The virtual delay d(t) satisfies for all t ≥ 0

d(t) ≤ h(α, ξ) ∨ z(α, ξ).
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minimal arrival curve α ∈ F↑
0 , and let the system offer a service

curve ξ ∈ F↑
≤0. The virtual delay d(t) satisfies for all t ≥ 0

d(t) ≤ h(α, ξ) ∨ z(α, ξ).

For proof details, please refer to [HCS24]
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Generalized Delay Bound
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Minimal Guarantees as the Laplace Transform

Similar idea as in [HCS24]

Guarantee a minimal amount of incoming traffic

It is represented through the Laplace Transform of the arrival
process
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Minimal Guarantees as the Laplace Transform

Similar idea as in [HCS24]

Guarantee a minimal amount of incoming traffic

It is represented through the Laplace Transform of the arrival
process

Definition

An arrival process A(s, t) is (σA, ρA)-bounded for θ > 0 if for all
0 ≤ s ≤ t

ϕA(s,t)(−θ) = E
[
e−θA(s,t)

]
≤ e−θρA(−θ)·(t−s)+θσA(−θ),
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Definition

An arrival process A(s, t) is (σA, ρA)-bounded for θ > 0 if for all
0 ≤ s ≤ t

ϕA(s,t)(−θ) = E
[
e−θA(s,t)

]
≤ e−θρA(−θ)·(t−s)+θσA(−θ),

In contrast to MGF, we need no extra assumptions

A nontrivial Laplace Transform always exists
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Generalized Sample Path Bounds: Backlog

The sample path backlog bound remains unchanged
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Generalized Sample Path Bounds: Backlog

The sample path backlog bound remains unchanged

Theorem

Consider a flow with arrival process A(s, t) traversing a server with
min-plus service process ξ(s, t). The backlog at time t ≥ 0 is
upper bounded by

q(t) ≤ A⊘ ξ (t, t).
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Generalized Sample Path Bounds: Delay

The sample path delay bound needs to be generalized

Observe the similarities between both DNC and SNC delay
bounds
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Generalized Sample Path Bounds: Delay

Theorem

Consider a flow with arrival process A(s, t) traversing a server with
min-plus service process ξ(s, t).
The virtual delay at time t ≥ 0 is upper bounded by

d(t) ≤ inf
{
s ≥ 0 : A ⊘̂ ξ(t + s, t) ≤ 0 AND

A⊗̂ξ(t, t + s) ≥ 0
}
,

x ⊗̂y(t, t + u) := inft+1≤τ≤t+u{x(t, τ) + y(τ, t + u)} and
x⊘̂y(t + u, t) := sup0≤τ≤t {x(τ, t)− y(τ, t + u)}.
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Stochastically Generalized Delay Bound

Theorem

Let θ > 0. Suppose we have an arrival process A that is
(σA, ρA)-bounded as well as

(
σA, ρA

)
-lower-bounded and a service

process ξ that is (σξ, ρξ)-bounded. Additionally, we require the
arrivals and the service to be independent. Further, we assume
stability condition

ρA(θ) < ρξ(−θ).

Let T ≥ 0. For the virtual delay, it holds for all t ≥ 0 that

P(d(t) > T ) ≤ Standard + Penalty .
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Stochastically Generalized Delay Bound
Theorem

Let θ > 0. Suppose we have an arrival process A that is
(σA, ρA)-bounded as well as

(
σA, ρA

)
-lower-bounded and a service

process ξ that is (σξ, ρξ)-bounded. Additionally, we require the
arrivals and the service to be independent. Further, we assume
stability condition

ρA(θ) < ρξ(−θ).

Let T ≥ 0. For the virtual delay, it holds for all t ≥ 0 that

P(d(t) > T )

≤e−θρξ(−θ)T eθσξ(−θ) ·
(
eθσA(θ)

1

1− eθ(ρA(θ)−ρξ(−θ))

+ eθσA(−θ)e−θ(ρA(−θ)−ρξ(−θ)) · 1− e−θ(ρA(−θ)−ρξ(−θ))T

1− e−θ(ρA(−θ)−ρξ(−θ))

)
.
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Stochastically Generalized Delay Bound

How high is the penalty?
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Toy Example (D/M/1)

We set the arrival rate λ = 1 and the delay at 4
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The bounds are converging from 30% utilization onward
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Toy Example (Penalty vs. Standard)

We set λ = 1 and the delay at 4
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The standard term rises rapidly

Our bound decreases with utilization

Higher utilization leads to tighter minimum arrival guarantees
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Conclusion

Extended SNC to support a broader class of service processes

Generalized delay bounds by leveraging minimum arrival
guarantees

Released the strictness requirement in multiple flow scenarios

Laplace bounds come for free in this framework

Additionally, derived new Laplace bounds for
Markov-modulated arrival processes
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Question Time
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Laplace Bound for Markov-Modulated Arrival
Processes

Theorem

Assume a Markov-modulated arrival process A with the finite state
space S . The Markov chain is described by its state space S and
transition matrix T = [tij ] such that tij > 0 for all i , j ∈ S . We
define the increments of the arrival process a(t) = XY (t)(t), where
Xi (t), i ∈ S , is an i.i.d. process with existing MGF, and denote by
E ∈ Diag(S) the matrix with entries
Ei := Eii := E

[
e−θa(t) | Yt = i

]
for all states i ∈ S . Then it holds

that the Laplace transform of A is (σ, ρ)-bounded with

σ(−θ) =
1

θ
log

((
max
i∈S

Ei

)
· maxk∈S x̄k
mink∈S x̄k

· 1

sp(ET )

)
,

ρ(−θ) = −1

θ
log (sp(ET )) ,

where x̄ is a positive eigenvector of ET .
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Numerical Evaluation of MM Truncated Normal
Arrivals (MMTN)

MMTN arrival processes offer modelling flexibility
The parameters of MMTN are set as µ = 0.5, σ = 1 and
t11 = 0.8, t22 = 0.2
Target delay is fixed at 10
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