
Using Minimal Arrival Curves to
Derive Per-Flow Performance

Bounds in (Tandem) Networks with
Complex Feedback Structures 1

Anja Hamscher, Lukas Wildberger, Jens B. Schmitt

June 5th, 2025

1to be published in ECRTS 2025



Outline

1 Previous NC Work on Feedback

2 Extending Analysis to Interdependent Feedback Constraints

3 Deriving Per-Flow Performance Bounds

4 Conclusion

Per-Flow Performance Bounds in Networks with Complex Feedback Structures S. 1/26



Previous NC Work on Feedback

1 Previous NC Work on Feedback

2 Extending Analysis to Interdependent Feedback Constraints

3 Deriving Per-Flow Performance Bounds

4 Conclusion

Per-Flow Performance Bounds in Networks with Complex Feedback Structures S. 2/26



Motivation

Figure: System with feedback

System with some sort of signaling mechanism (finite buffer,
...)

Signaling is modeled as backwards loop that feeds back into
dataflow

Feedback is modeled by some function Φ

Arrivals to the system are throttled according to this function
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Motivation

Figure: System with feedback

System with some sort of signaling mechanism (finite buffer,
...)

Signaling is modeled as backwards loop that feeds back into
dataflow

Feedback is modeled by some function Φ

Arrivals to the system are throttled according to this function

Call ϕ with D ◦ Φ ≥ D ⊗ ϕ a feedback curve
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What Do We Want To Analyze?

Figure: Example network with various feedback constraints and flows.

Network with a multitude of feedback constraints that
potentially have interdependencies

Arbitrary number of interfering flows

Goal: Obtain per-flow performance bounds for any scheduling
policy

� Not just FIFO...
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Closed-Loop System

System with feedback is a closed-loop system

Issue: not min-plus linear [Boudec and Thiran, 2001], hence
cannot be (directly) analyzed using NC

Solution: transformation into open-loop system [Chang, 2000]

Theorem

Let an arrival process A traverse a system S offering service curve
β ∈ F . The system is subject to a feedback curve ϕ. If

D ≥ (A ∧ (D ⊗ ϕ))⊗ β,

then
D ≥ A⊗ β ⊗ (β ⊗ ϕ)∗.
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Transformation Into Open-Loop System

Figure: Open-loop transformation using Theorem.

Using the Theorem, we obtain an open-loop system

Feedback is still captured in the system, but encoded into the
service curve directly

Resulting system is min-plus linear → can be analyzed with
normal NC methods
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Generalization To Arbitrary Length

Figure: Example network with various feedback constraints and flows.
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Generalization To Arbitrary Length

Figure: Open-loop transformation for a feedback constraint of arbitrary
length.

Generalize to feedback constraint F = (i , j , ϕ)

Transformed service curve
x
βi := βi ⊗

(⊗j
k=i βk ⊗ ϕ

)∗
Call this Proposition for remainder of the talk
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Extending Analysis to Interdependent Feedback
Constraints

1 Previous NC Work on Feedback

2 Extending Analysis to Interdependent Feedback Constraints

3 Deriving Per-Flow Performance Bounds

4 Conclusion
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Complex Feedback Structures

What about having multiple constraints in a single system?

What if the constraints have an interdependency?

Some existing results on overlapping interdependency
[Chang, 2000, Bose et al., 2006, Bouillard et al., 2009]

But, not the only interdependence type!
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Complex Feedback Structures
What about having multiple constraints in a single system?

What if the constraints have an interdependency?

Some existing results on overlapping interdependency
[Chang, 2000, Bose et al., 2006, Bouillard et al., 2009]

Figure: Overlapping interdependency [Chang, 2000].

But, not the only interdependence type!
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Interdependence Types

Establish lexicographical order over all existing feedback
constraints Fl = (il , jl , ϕl), l = 1, . . . , k , in the system as
follows

� First criterion: order by il in ascending order
� Second criterion: order by jl in descending order

Result is ordered set of feedback constraints

Can then specify the three interdependence types between two
constraints Fl and Fm with l < m

� If jl < im, no interdependency exists
� If jl ≥ im, interdependency exists
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Contained Interdependency

Figure: Feedback constraints with contained interdependency.

Is the case for il < im ⇒ Fl is fully contained within Fm

Canonical example: F1 = (1, 3, ϕ1),F2 = (2, 2, ϕ2)

Use Theorem to resolve F2 →
x
β2= β2 ⊗ (β2 ⊗ ϕ2)∗

Use Proposition to resolve F1
→x
β1= β1 ⊗ (β2 ⊗ ϕ2)∗ ⊗ (β1 ⊗ β2 ⊗ β3 ⊗ ϕ1)∗
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Overlapping Interdependency

Figure: Feedback constraints with overlapping interdependency.

”Known” case; occurs for jl < jm

Canonical example: F1 = (1, 2, ϕ1),F2 = (2, 3, ϕ2)

Use Prop. to resolve F2 →
x
β2= β2 ⊗ (β2 ⊗ β3 ⊗ ϕ2)∗

Use Prop. to resolve F1
→x
β1= β1 ⊗ (β1 ⊗ β2 ⊗ ϕ1)∗ ⊗ (β2 ⊗ β3 ⊗ ϕ2)∗
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Compounded Interdependence

(a) Combined minimum (b) Separated minima

Figure: Equivalent canonical compounded feedback structures.

Occurs if il = im

Canonical example: F1 = (1, 2, ϕ1),F2 = (1, 1, ϕ2)

Can show that structure (a) is equivalent to structure (b)

(a) A′
1 = A1 ∧ (D2 ⊗ ϕ1) ∧ (D1 ⊗ ϕ2)

(b) A′
1 = A1 ∧ (D2 ⊗ ϕ1),

A′′
1 = A′

1 ∧ (D1 ⊗ ϕ2) = A1 ∧ (D2 ⊗ ϕ1) ∧ (D1 ⊗ ϕ2)
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Compounded Interdependency

Figure: Resulting open-loop system.

Recover contained interdependency, but with il = im

⇒ β1 has to be transformed twice

x
β1= β1 ⊗ (β1 ⊗ ϕ2)∗ ⊗ (β1 ⊗ β2 ⊗ ϕ1)∗
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Order of Evaluation

Using Prop., we can use the insights from the canonical
examples for feedback constraints of arbitrary lengths

Have seen in all canonical example that there is one feedback
constraint that can be safely resolved first

Using the established ordering of feedback constraints, this is
always the feedback with the largest ordering index

General procedure:

1. Transform feedback constraint Fl with largest index l and
exchange βil with

x
βil

2. Remove Fl from set of feedback constraints
3. Repeat until no feedback constraints are left in the system
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Order of Evaluation

Figure: Example network before transformation.
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Order of Evaluation

Figure: First transformation.
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Order of Evaluation

Figure: Second transformation.
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Order of Evaluation

Figure: Third transformation.
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Order of Evaluation

Figure: Fourth transformation.
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Order of Evaluation

Figure: Fifth transformation.
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Order of Evaluation

Figure: Transformed open-loop system.
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Deriving Per-Flow Performance Bounds

1 Previous NC Work on Feedback

2 Extending Analysis to Interdependent Feedback Constraints

3 Deriving Per-Flow Performance Bounds

4 Conclusion
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Obtaining A Residual Service Curve

Figure: Open-loop system of the introductory example.

Start with an open-loop system, where each transformed node
offers a min-plus service curve

Interested in performance bounds for a flow of interest f1

Use general residual service curve formula from
[Bouillard et al., 2018]

βresi = βi − αc
i

with αc
i the maximal arrival curve for the cross flows
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Obtaining Per-Flow Performance Bounds
Use result from [Hamscher et al., 2024] to obtain performance
bounds

Theorem

Let an arrival process A traverse a system S. Further, let the
arrivals be constrained by maximal arrival curve α ∈ F↑0 , and

minimal arrival curve α ∈ F↑0 , and let the system offer a min-plus
service curve β ∈ F , with ξ := β↓ its lower non-decreasing closure.
The backlog q(t) satisfies for all t

q(t) ≤ v(α, ξ) ∧ sup
s≥0
{α(s)}.

The virtual delay d(t) satisfies for all t ≥ 0

d(t) ≤ max{z(α, ξ), h(α, ξ)}.

with z(α, ξ) := inf{τ ≥ 0|α⊗ ξ(τ) ≥ 0}
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Conclusion

1 Previous NC Work on Feedback

2 Extending Analysis to Interdependent Feedback Constraints

3 Deriving Per-Flow Performance Bounds

4 Conclusion
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Closing Remarks

Identified and showed how different interdependence types
between feedback constraints are resolved

Here, considered tandem networks

� Lexicographical order of feedback constraints is enough to
identify order of evaluation

Order of evaluation for feed-forward networks should be
straightforward, but left to be proven

Idea: build precedence graph for the feedback constraints and
find its topological order

⇒ Transform feedback constraints in the order provided by the
topological order

Applying this method to tandem networks provides the correct
order of evaluation
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Applying this method to tandem networks provides the correct
order of evaluation
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Any questions?
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Generalization To Arbitrary Length
Can generalize the Theorem to transform a system with a
feedback constraint of arbitrary length

Proposition

Let a flow f traverse a tandem of n nodes, each offering a service
curve βk , k ∈ {1, . . . , n}, with a single feedback constraint
F = (i , j , ϕ). The tandem offers an end-to-end service curve to the
flow f

D ≥ A⊗ βe2e, with βe2e :=
i−1⊗
k=1

βk⊗
x
βi ⊗

n⊗
l=i+1

βl , (1)

and a transformed service curve at node i

x
βi := βi ⊗

(
j⊗

k=i

βk ⊗ ϕ

)∗
. (2)
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Compounded Interdependency

Note that in the case of ik = il and jk = jl , i.e., the extreme case
of compounded feedback spanning the same set of nodes, we only
need to evaluate a single feedback loop, however, with feedback
constraint ϕk ∧ ϕl . Using distributivity,

A′ = A ∧ (D ⊗ ϕk) ∧ (D ⊗ ϕl) = A ∧ D ⊗ (ϕk ∧ ϕl).
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