
IACOPO CANETTA, ANTONIO A. SALVALAGGIO, ANDREA TRASACCO,

RAFFAELE ZIPPO, GIOVANNI STEA

UNIVERSITY OF PISA

Nancy.Expressions
A library for automated optimizations

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 1

Nancy.Expressions

2Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it

For Teaching For Research For Applications

A library for computation of Deterministic Network Calculus expressions

Design and implementation by Andrea Trasacco for his M.Sc. Thesis

Presented at VALUETOOLS 2024 (proceedings pending) as
Nancy.Expressions: Towards a CAS for DNC – A. Trasacco, R. Zippo, G. Stea

Packages, code, documentation already available on Nuget and GitHub

A simple problem, using Nancy

var left = Curve.Subtraction(beta1, alpha1)

.ToNonNegative()

.ToUpperNonDecreasing();

var tmp = Curve.Addition(alpha3, alpha4)

.Deconvolution(beta3);

var right = Curve.Subtraction(beta4, tmp)

.ToNonNegative()

.ToUpperNonDecreasing();

var conv = Curve.Convolution(left, right);

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 3

[BBL18]

A simple problem, using Nancy

var left = Curve.Subtraction(beta1, alpha1)

.ToNonNegative()

.ToUpperNonDecreasing();

var tmp = Curve.Addition(alpha3, alpha4)

.Deconvolution(beta3);

var right = Curve.Subtraction(beta4, tmp)

.ToNonNegative()

.ToUpperNonDecreasing();

var conv = Curve.Convolution(left, right);

var result = conv.Compute();

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 4

[BBL18]

Some undesirable things:
1. Debugging using only the resulting

curve, not how are they computed
2. Code is computation strategy

Trade-off between readability/simplicity
and clever optimizations

3. Some models have options, like
optimizable parameters

4. The above problems scale with program
complexity – we usually compose
studies on networks

The same problem, using Nancy.Expressions

var left = Expressions.Subtraction(beta1, alpha1)

.ToNonNegative()

.ToUpperNonDecreasing();

var tmp = Expressions.Addition(alpha3, alpha4)

.Deconvolution(beta3);

var right = Expressions.Subtraction(beta4, tmp)

.ToNonNegative()

.ToUpperNonDecreasing();

var conv = Expressions.Convolution(left, right);

var result = conv.Compute();

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 5

𝒪(1)
Only constructs the
expression tree

All computations happen here

[BBL18]

Nice-to-haves

1. Debugging using only the resulting curve, not how are they computed

Can print out the expression and its result, separately

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 6

Nice-to-haves

2. Code is computation strategy. Trade-off between readability and optimizations

In Nancy.Expressions, most of the program builds the expressions to be computed

We can implement many optimizations as transformations or alternative
Compute() algorithms

Only the last part of the program needs to be altered to take advantage of these

Examples in the second part of the presentation

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 7

Nice-to-haves

8

var delta_theta_0 = Expressions.FromCurve(new
DelayServiceCurve(0));

var b_theta_0 = Expressions.Subtraction(

 beta,

 Expressions.Addition(contendingFlows)

 .Convolution(delta_theta_0))

 .ToNonNegative()

 .Minimum(delta_theta_0);

var wcd_0 = Expressions.HorizontalDeviation(foi,
b_theta_0).Compute();

var delta_theta_1 = Expressions.FromCurve(new
DelayServiceCurve(1));

var b_theta_1 = b_theta_0.ReplaceByValue(
delta_theta_0, delta_theta_1);

var wcd_1 = Expressions.HorizontalDeviation(foi,
b_theta_1).Compute();

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it

3. Some models have options, like optimizable parameters

Expressions can be transformed by replacing sub-expressions

FIFO residual s.c. [BBL18]

∀𝜃 ≥ 0, 𝛽𝑖
𝜃 is a s.c.

Nice-to-haves

4. The problems scale with program complexity – we compose network studies

We converted a tool using Nancy (from NPBA repo) to Nancy.Expressions.

It was straightforward, requiring little understanding of the underlying logic

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 9

Nice-to-haves

4. The problems scale with program complexity – we compose network studies

We converted a tool using Nancy (from NPBA repo) to Nancy.Expressions.

It was straightforward, requiring little understanding of the underlying logic

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 10

Optimizing with
Nancy.Expressions
A few use cases and the road ahead

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 11

Nice-to-haves

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 12

Equivalences

Transform expressions for speed
of computation

Computation Scheduling

Take the computation path that
takes the least

Alternative Algorithms

Different Compute() algorithms to
get the same result

2. Code is computation strategy. Trade-off between readability and optimizations

In Nancy.Expressions, most of the program builds the expressions to be computed
We can implement many optimizations as transformations or alternative Compute() algorithms
Only the last part of the program needs to be altered to take advantage of these

𝑓 ⊗ 𝑓 = 𝑓

K

Optimizing with Equivalences

Many results in literature simplify expressions into easier-to-compute ones

Instead of doing it with pen-and-paper, Nancy.Expressions allows to automate it

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 13

Example from literature [BJLL06, ZS23], involving O(𝑛2) convolutions

The convolution ⊗ is commutative and associative, and 𝑓 ⊗ 𝑓 = 𝑓

So in [BJLL06, ZS23], this was manually optimized into 𝑂(𝑛) convolutions

Optimizing with Equivalences

Equivalence objects represent these properties – including their hypotheses

We can use them iteratively to simplify expressions

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 14

do
{
 previous = expression;
 expression = previous.ApplyEquivalence(equivalence);
} while (expression != previous);

Scales well in instances where optimizations are hard to spot or apply

Optimizing with Equivalences

We benchmarked a simple program implementing the intuitive O(𝑛2) expression

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 15

Optimizing with computation scheduling

This result was explored by Antonio A. Salvalaggio in his B.Sc. thesis

Presented as Improving (min,+) Convolutions by Heuristic Operation Reordering at
JWRTC @RTNS24, won JRWRTC Best Paper Award

1. Associative and commutative operations yield the same result regardless of
order of computation

2. But the computation time may not be the same

This work focused on (min,+) convolution and considered only its commutativity

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 16

𝛽1 ⊗𝛽2 ⊗𝛽3 ⊗𝛽4

𝛽1⊗𝛽2 ⊗𝛽3 ⊗𝛽4 𝛽1⊗𝛽4 ⊗𝛽3 ⊗𝛽2 𝛽2 ⊗𝛽3 ⊗𝛽4 ⊗𝛽1… …

Optimizing with computation scheduling

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 17

If left to chance, we may waste a
lot of computation time

Goal: seek a “good” order

We studied convolutions of 6 operands, comparing the computation time of all permutations

Optimizing with computation scheduling

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 18

We experimented with combining
heuristics for first-pair and next-curve
selection

The resulting algorithm can pick an order
of computations that is “to the left” of
the distribution

Better than random ordering, with little
overhead

Current work is aiming to generalize this approach to consider associativity as well
The key are the heuristics used to predict cost and explore the options

Optimizing with Compute() algorithms

Before the call to Compute(), the program builds the expression tree object with
all the necessary data

We can use this to use different strategies – like Finitary RTC

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 19

Finitary RTC in Nancy.Expressions
Finitary RTC was discussed in a series of papers [GY13, LBS16, LBSGY17]

Can be applied to ℎ𝑑𝑒𝑣() and 𝑣𝑑𝑒𝑣() expressions, under some hypotheses

Generalized as an expression-based algorithm by Iacopo Canetta in his M.Sc. thesis

Main problem: period explosion in large studies

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 20

Period explosion

Finitary RTC in Nancy.Expressions

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 21

hdev

Finitary RTC was discussed in a series of papers [GY13, LBS16, LBSGY17]

Can be applied to ℎ𝑑𝑒𝑣() and 𝑣𝑑𝑒𝑣() expressions, under some hypotheses

Generalized as an expression-based algorithm by Iacopo Canetta in his M.Sc. thesis

Main problem: period explosion in large studies

Core idea: bound the domain of interest, removing the unused periodic parts

Finitary RTC in Nancy.Expressions

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 22

Finitary RTC was discussed in a series of papers [GY13, LBS16, LBSGY17]

Can be applied to ℎ𝑑𝑒𝑣() and 𝑣𝑑𝑒𝑣() expressions, under some hypotheses

Generalized as an expression-based algorithm by Iacopo Canetta in his M.Sc. thesis

Main problem: period explosion in large studies

Core idea: bound the domain of interest, removing the unused periodic parts

Period explosion

0 5 10 15 20 25 30

0

5

10

15

20

f

K

Finitary RTC in Nancy.Expressions

A 4-step algorithm:
1. Replace each operand with UA approximations

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 23

Finitary RTC in Nancy.Expressions

A 4-step algorithm:
1. Replace each operand with UA approximations

2. Compute bound on hdev – say 𝐾ℎ𝑑𝑒𝑣

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 24

Finitary RTC in Nancy.Expressions

A 4-step algorithm:
1. Replace each operand with UA approximations

2. Compute bound on hdev – say 𝐾ℎ𝑑𝑒𝑣
3. Propagate to find per-operand bounds – say 𝐾𝛽1 , 𝐾𝛼1 , …

◦ Replace each operand with its finite cut, e.g. 𝛼1
′ = 𝛼1 0, 𝐾𝛼1

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 25

Finitary RTC in Nancy.Expressions

A 4-step algorithm:
1. Replace each operand with UA approximations

2. Compute bound on hdev – say 𝐾ℎ𝑑𝑒𝑣
3. Propagate to find per-operand bounds – say 𝐾𝛽1 , 𝐾𝛼1 , …

◦ Replace each operand with its finite cut, e.g. 𝛼1
′ = 𝛼1 0, 𝐾𝛼1

4. Run the computation on finite cuts

◦ Same result, no period explosion

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 26

Finitary RTC in Nancy.Expressions

Exploiting this is problematic: you need to rewrite a great deal of code

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 27

Nancy, without F-RTC, 35 lines of code Nancy, with F-RTC, 139 lines of code

Finitary RTC in Nancy.Expressions

With the expression-based algorithm and Nancy.Expressions, this is now free

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 28

Nancy.Expressions, 35 lines of code

var result = delayExpression.Compute();

var result = delayExpression.ComputeFinitary();

Finitary RTC in Nancy.Expressions

Now that it is easy to use – is it always worth it?

No.

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 29

hdev

Finitary RTC in Nancy.Expressions

Now that it is easy to use – is it always worth it?

No. The finite prefix from F-RTC may be larger than the minimal representation

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 30

Finitary RTC in Nancy.Expressions

Now that it is easy to use – is it always worth it?

No. The finite prefix from F-RTC may be larger than the minimal representation

Increasing the burst or the rate utilizations are easy ways to find examples where
plain UPP curves are much faster – using Nancy optimizations like super-isospeed

Next goal: find heuristic to transparently apply the best method

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 31

Nancy.Expressions

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 32

For Teaching For Research For Applications

A library for computation of Deterministic Network Calculus expressions

Open-source, written in C#, extends the existing Nancy library

While Nancy implements operators, Nancy.Expressions generalizes it to expressions
◦ Build, visualize and manipulate expressions before computing them

◦ Apply equivalences to simplify expressions

◦ Use different computation algorithms without rewriting the entire program

Nancy.Expressions

Developer experience
Writing and debugging analysis tool is improved thanks to the focus on
expressions, that remove a lot of noise from the program structure

State of the art accessibility
Results from literature like theorems, properties and compute algorithms can be
coded in and re-used much more easily

New paths for optimizations
Our experiments with the above showed many trade-off instances

There is much room to research heuristics to improve runtime and make harder or
more accurate studies feasible

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 33

Thanks!

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 34

References

[BJLL06] A. Bose, X. Jiang, B. Liu, and G. Li, Analysis of Manufacturing Blocking Systems with Network Calculus,
Performance Evaluation, 2006

[GY13] N. Guan and W. Yi, Finitary Real-Time Calculus: Efficient Performance Analysis of Distributed Embedded
Systems, IEEE RTSS 2013

[LBS16] K. Lampka, S. Bondorf and J. B. Schmitt, Achieving Efficiency without Sacrificing Model Accuracy:
Network Calculus on Compact Domains, IEEE MASCOTS 2016

[LBSGY17] K. Lampka, S. Bondorf, J. B. Schmitt, N. Guan and W. Yi, Generalized Finitary Real-Time Calculus,
IEEE INFOCOM 2017

[ZS22] R. Zippo and G. Stea, Nancy: an efficient parallel Network Calculus library, SoftwareX, 2022

[ZS23] R. Zippo and G. Stea, Computationally Efficient Worst-Case Analysis of Flow-Controlled Networks With
Network Calculus, IEEE Transactions on Information Theory, 2023

[SZS24] A. A. Salvalaggio, R. Zippo, and G. Stea, Improving (min,+) Convolutions by Heuristic Operation
Reordering, JWRTC @RTNS24

[TZS24] A. Trasacco, R. Zippo, and G. Stea, Nancy.Expressions: Towards a CAS for DNC, VALUETOOLS 2024

Equivalences and cut-through properties

An important part of applying an equivalence is testing its hypotheses

Example: knowing that 𝑓 is subadditive, we can simplify 𝑓 ⊗ 𝑓 = 𝑓

To test subadditivity, we need to verify that 𝑓 ⊗ 𝑓 = 𝑓

Recall that 𝑓 may be an expression

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 36

Equivalences and cut-through properties

Core idea: while testing properties, many computations can be skipped if the
results in literature are cleverly used

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 37

⊗

⬚ +

𝛾𝑟,𝑏 𝛾𝑟,𝑏

The convolution is (surely) subadditive if its operands are

The subadditive closure is subadditive

The sum is (surely) subadditive if its operands are

Token-bucket arrival curves are subadditive

So we can conclude this expression is subadditive without
computing it and its self-convolution

Nancy.Expressions is designed to take advantage of these
inferences avoiding unnecessary computations

𝛾𝑟1,𝑏1 + 𝛾𝑟2,𝑏2 ⊗⬚

Optimizing with Equivalences - Syntax

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 38

{

 f in U subadditive;

 g in U zero-at-zero;

 f <= g;

 f * g well-defined;

} == > f * g = f

In code Using an ad-hoc syntax

var equivalence = new Equivalence(

 leftSideExpression: Expressions.Convolution(

 Expressions.Placeholder("f"),

 Expressions.Placeholder("g")),

 rightSideExpression: Expressions.Placeholder("f")

);

equivalence.AddHypothesis("f", f => f.IsSubAdditive);

equivalence.AddHypothesis("g", g => g.IsZeroAtZero);

equivalence.AddHypothesis(

 "f", "g", (CurveExpression f, CurveExpression g) => f <= g);

equivalence.AddHypothesis(

 "f", "g", (f, g) => f.Convolution(g).IsWellDefined);

Optimizing with Equivalences - Limitations

In its current state, application is automated but manually triggered.

The user is expected to know which equivalences may help

A valuable goal of this is to transparently apply known equivalences to optimize

This is a non-trivial, with different challenges
◦ What is the cost of looking for matches and verifying the hypotheses?

◦ What is the time saved by using the equivalence?

◦ What about substitutions that enable other equivalences?

◦ How should we limit the exploration overhead vs. the computation time?

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 39

Optimizing with computation scheduling - insights

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 40

The difference comes from wasted computations

Nancy can minimize the result after a computation, but also uses optimizations
that skip unnecessary ones before

A “good path” has good intermediate operations that avoid useless computations
that are later discarded

Addressing associativity is more complicated, but has several advantages
◦ A larger search space should include lower minima

◦ Can exploit parallelization on multicore systems

◦ Can be mixed with other results, e.g. convolutions of convex/concave/subadditive functions

An abstraction hierarchy

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025 nancy.unipi.it 41

Abstraction Level Possible optimizations Software

DNC and system model How the system model is expressed
into curves, e.g. a strict service
curve can be replaced by its
superadditive closure.

Your analysis tool, ??

(min,+) and (max,+) expressions Use algebraic properties to
compute the expression faster

Nancy.Expressions, NC Maude?

(min,+) and (max,+) operations Use algebraic properties to
compute the operation faster

Nancy, RTC toolbox

	Default Section
	Slide 1: Nancy.Expressions A library for automated optimizations

	Introduction
	Slide 2: Nancy.Expressions
	Slide 3: A simple problem, using Nancy
	Slide 4: A simple problem, using Nancy
	Slide 5: The same problem, using Nancy.Expressions
	Slide 6: Nice-to-haves
	Slide 7: Nice-to-haves
	Slide 8: Nice-to-haves
	Slide 9: Nice-to-haves
	Slide 10: Nice-to-haves

	Optimizations
	Slide 11: Optimizing with Nancy.Expressions
	Slide 12: Nice-to-haves
	Slide 13: Optimizing with Equivalences
	Slide 14: Optimizing with Equivalences
	Slide 15: Optimizing with Equivalences
	Slide 16: Optimizing with computation scheduling
	Slide 17: Optimizing with computation scheduling
	Slide 18: Optimizing with computation scheduling
	Slide 19: Optimizing with Compute() algorithms
	Slide 20: Finitary RTC in Nancy.Expressions
	Slide 21: Finitary RTC in Nancy.Expressions
	Slide 22: Finitary RTC in Nancy.Expressions
	Slide 23: Finitary RTC in Nancy.Expressions
	Slide 24: Finitary RTC in Nancy.Expressions
	Slide 25: Finitary RTC in Nancy.Expressions
	Slide 26: Finitary RTC in Nancy.Expressions
	Slide 27: Finitary RTC in Nancy.Expressions
	Slide 28: Finitary RTC in Nancy.Expressions
	Slide 29: Finitary RTC in Nancy.Expressions
	Slide 30: Finitary RTC in Nancy.Expressions
	Slide 31: Finitary RTC in Nancy.Expressions
	Slide 32: Nancy.Expressions
	Slide 33: Nancy.Expressions
	Slide 34
	Slide 35: References
	Slide 36: Equivalences and cut-through properties
	Slide 37: Equivalences and cut-through properties
	Slide 38: Optimizing with Equivalences - Syntax
	Slide 39: Optimizing with Equivalences - Limitations
	Slide 40: Optimizing with computation scheduling - insights
	Slide 41: An abstraction hierarchy

