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For Teaching For Research For Applications

A library for computation of Deterministic Network Calculus expressions

Design and implementation by Andrea Trasacco for his M.Sc. Thesis

Presented at VALUETOOLS 2024 (proceedings pending) as
Nancy.Expressions: Towards a CAS for DNC – A. Trasacco, R. Zippo, G. Stea

Packages, code, documentation already available on Nuget and GitHub



A simple problem, using Nancy

var left = Curve.Subtraction(beta1, alpha1)

.ToNonNegative()

.ToUpperNonDecreasing();

var tmp = Curve.Addition(alpha3, alpha4)

.Deconvolution(beta3);

var right = Curve.Subtraction(beta4, tmp)

.ToNonNegative()

.ToUpperNonDecreasing();

var conv = Curve.Convolution(left, right);
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A simple problem, using Nancy

var left = Curve.Subtraction(beta1, alpha1)

.ToNonNegative()

.ToUpperNonDecreasing();

var tmp = Curve.Addition(alpha3, alpha4)

.Deconvolution(beta3);

var right = Curve.Subtraction(beta4, tmp)

.ToNonNegative()

.ToUpperNonDecreasing();

var conv = Curve.Convolution(left, right);

var result = conv.Compute();
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Some undesirable things:
1. Debugging using only the resulting 

curve, not how are they computed
2. Code is computation strategy

Trade-off between readability/simplicity 
and clever optimizations

3. Some models have options, like 
optimizable parameters

4. The above problems scale with program 
complexity – we usually compose 
studies on networks



The same problem, using Nancy.Expressions

var left = Expressions.Subtraction(beta1, alpha1)

.ToNonNegative()

.ToUpperNonDecreasing();

var tmp = Expressions.Addition(alpha3, alpha4)

.Deconvolution(beta3);

var right = Expressions.Subtraction(beta4, tmp)

.ToNonNegative()

.ToUpperNonDecreasing();

var conv = Expressions.Convolution(left, right);

var result = conv.Compute();
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𝒪(1)
Only constructs the 
expression tree

All computations happen here

[BBL18]



Nice-to-haves

1. Debugging using only the resulting curve, not how are they computed

Can print out the expression and its result, separately
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Nice-to-haves

2. Code is computation strategy. Trade-off between readability and optimizations

In Nancy.Expressions, most of the program builds the expressions to be computed

We can implement many optimizations as transformations or alternative 
Compute() algorithms

Only the last part of the program needs to be altered to take advantage of these

Examples in the second part of the presentation
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Nice-to-haves

8

var delta_theta_0 = Expressions.FromCurve(new 
DelayServiceCurve(0));

var b_theta_0 = Expressions.Subtraction(

    beta, 

    Expressions.Addition(contendingFlows)

      .Convolution(delta_theta_0))

    .ToNonNegative()

   .Minimum(delta_theta_0);

var wcd_0 = Expressions.HorizontalDeviation(foi, 
b_theta_0).Compute();

var delta_theta_1 = Expressions.FromCurve(new 
DelayServiceCurve(1));

var b_theta_1 = b_theta_0.ReplaceByValue( 
delta_theta_0, delta_theta_1);

var wcd_1 = Expressions.HorizontalDeviation(foi, 
b_theta_1).Compute();

Raffaele Zippo - Nancy.Expressions - WoNeCa 2025             nancy.unipi.it

3. Some models have options, like optimizable parameters

Expressions can be transformed by replacing sub-expressions

FIFO residual s.c. [BBL18]

∀𝜃 ≥ 0, 𝛽𝑖
𝜃 is a s.c.



Nice-to-haves

4. The problems scale with program complexity – we compose network studies

We converted a tool using Nancy (from NPBA repo) to Nancy.Expressions.

It was straightforward, requiring little understanding of the underlying logic
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Nice-to-haves

4. The problems scale with program complexity – we compose network studies

We converted a tool using Nancy (from NPBA repo) to Nancy.Expressions.

It was straightforward, requiring little understanding of the underlying logic
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Optimizing with 
Nancy.Expressions
A few use cases and the road ahead
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Nice-to-haves
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Equivalences

Transform expressions for speed 
of computation

Computation Scheduling

Take the computation path that 
takes the least

Alternative Algorithms

Different Compute() algorithms to 
get the same result

2. Code is computation strategy. Trade-off between readability and optimizations

In Nancy.Expressions, most of the program builds the expressions to be computed
We can implement many optimizations as transformations or alternative Compute() algorithms
Only the last part of the program needs to be altered to take advantage of these

𝑓 ⊗ 𝑓 = 𝑓
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Optimizing with Equivalences

Many results in literature simplify expressions into easier-to-compute ones

Instead of doing it with pen-and-paper, Nancy.Expressions allows to automate it
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Example from literature [BJLL06, ZS23], involving O(𝑛2) convolutions

The convolution ⊗ is commutative and associative, and  𝑓 ⊗ 𝑓 = 𝑓

So in [BJLL06, ZS23], this was manually optimized into 𝑂(𝑛) convolutions



Optimizing with Equivalences

Equivalence objects represent these properties – including their hypotheses

We can use them iteratively to simplify expressions
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do
{
  previous = expression;
  expression = previous.ApplyEquivalence(equivalence);
} while (expression != previous);

Scales well in instances where optimizations are hard to spot or apply 



Optimizing with Equivalences

We benchmarked a simple program implementing the intuitive O(𝑛2) expression
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Optimizing with computation scheduling

This result was explored by Antonio A. Salvalaggio in his B.Sc. thesis

Presented as Improving (min,+) Convolutions by Heuristic Operation Reordering at 
JWRTC @RTNS24, won JRWRTC Best Paper Award

1. Associative and commutative operations yield the same result regardless of 
order of computation

2. But the computation time may not be the same

This work focused on (min,+) convolution and considered only its commutativity
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𝛽1 ⊗𝛽2 ⊗𝛽3 ⊗𝛽4

𝛽1⊗𝛽2 ⊗𝛽3 ⊗𝛽4 𝛽1⊗𝛽4 ⊗𝛽3 ⊗𝛽2 𝛽2 ⊗𝛽3 ⊗𝛽4 ⊗𝛽1… …



Optimizing with computation scheduling
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If left to chance, we may waste a 
lot of computation time

Goal: seek a “good” order

We studied convolutions of 6 operands, comparing the computation time of all permutations



Optimizing with computation scheduling
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We experimented with combining 
heuristics for first-pair and next-curve 
selection

The resulting algorithm can pick an order 
of computations that is “to the left” of 
the distribution

Better than random ordering, with little 
overhead

Current work is aiming to generalize this approach to consider associativity as well
The key are the heuristics used to predict cost and explore the options



Optimizing with Compute() algorithms

Before the call to Compute(), the program builds the expression tree object with 
all the necessary data 

We can use this to use different strategies – like Finitary RTC
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Finitary RTC in Nancy.Expressions
Finitary RTC was discussed in a series of papers [GY13, LBS16, LBSGY17]

Can be applied to ℎ𝑑𝑒𝑣() and 𝑣𝑑𝑒𝑣() expressions, under some hypotheses

Generalized as an expression-based algorithm by Iacopo Canetta in his M.Sc. thesis 

Main problem: period explosion in large studies
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Period explosion 



Finitary RTC in Nancy.Expressions
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hdev

Finitary RTC was discussed in a series of papers [GY13, LBS16, LBSGY17]

Can be applied to ℎ𝑑𝑒𝑣() and 𝑣𝑑𝑒𝑣() expressions, under some hypotheses

Generalized as an expression-based algorithm by Iacopo Canetta in his M.Sc. thesis 

Main problem: period explosion in large studies

Core idea: bound the domain of interest, removing the unused periodic parts



Finitary RTC in Nancy.Expressions
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Finitary RTC was discussed in a series of papers [GY13, LBS16, LBSGY17]

Can be applied to ℎ𝑑𝑒𝑣() and 𝑣𝑑𝑒𝑣() expressions, under some hypotheses

Generalized as an expression-based algorithm by Iacopo Canetta in his M.Sc. thesis 
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Core idea: bound the domain of interest, removing the unused periodic parts
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Finitary RTC in Nancy.Expressions

A 4-step algorithm:
1. Replace each operand with UA approximations
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Finitary RTC in Nancy.Expressions

A 4-step algorithm:
1. Replace each operand with UA approximations

2. Compute bound on hdev – say 𝐾ℎ𝑑𝑒𝑣
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Finitary RTC in Nancy.Expressions

A 4-step algorithm:
1. Replace each operand with UA approximations

2. Compute bound on hdev – say 𝐾ℎ𝑑𝑒𝑣
3. Propagate to find per-operand bounds – say 𝐾𝛽1 , 𝐾𝛼1 , …

◦ Replace each operand with its finite cut, e.g. 𝛼1
′ = 𝛼1 0, 𝐾𝛼1
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Finitary RTC in Nancy.Expressions

A 4-step algorithm:
1. Replace each operand with UA approximations

2. Compute bound on hdev – say 𝐾ℎ𝑑𝑒𝑣
3. Propagate to find per-operand bounds – say 𝐾𝛽1 , 𝐾𝛼1 , …

◦ Replace each operand with its finite cut, e.g. 𝛼1
′ = 𝛼1 0, 𝐾𝛼1

4. Run the computation on finite cuts

◦ Same result, no period explosion
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Finitary RTC in Nancy.Expressions

Exploiting this is problematic: you need to rewrite a great deal of code
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Nancy, without F-RTC, 35 lines of code Nancy, with F-RTC, 139 lines of code



Finitary RTC in Nancy.Expressions

With the expression-based algorithm and Nancy.Expressions, this is now free
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Nancy.Expressions, 35 lines of code

var result = delayExpression.Compute();

var result = delayExpression.ComputeFinitary();



Finitary RTC in Nancy.Expressions

Now that it is easy to use – is it always worth it?

No.
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hdev



Finitary RTC in Nancy.Expressions

Now that it is easy to use – is it always worth it?

No. The finite prefix from F-RTC may be larger than the minimal representation
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Finitary RTC in Nancy.Expressions

Now that it is easy to use – is it always worth it?

No. The finite prefix from F-RTC may be larger than the minimal representation

Increasing the burst or the rate utilizations are easy ways to find examples where
plain UPP curves are much faster – using Nancy optimizations like super-isospeed

Next goal: find heuristic to transparently apply the best method
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Nancy.Expressions
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For Teaching For Research For Applications

A library for computation of Deterministic Network Calculus expressions

Open-source, written in C#, extends the existing Nancy library

While Nancy implements operators, Nancy.Expressions generalizes it to expressions
◦ Build, visualize and manipulate expressions before computing them

◦ Apply equivalences to simplify expressions

◦ Use different computation algorithms without rewriting the entire program



Nancy.Expressions

Developer experience
Writing and debugging analysis tool is  improved thanks to the focus on 
expressions, that remove a lot of noise from the program structure

State of the art accessibility
Results from literature like theorems, properties and compute algorithms can be 
coded in and re-used much more easily

New paths for optimizations
Our experiments with the above showed many trade-off instances 

There is much room to research heuristics to improve runtime and make harder or 
more accurate studies feasible
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Thanks!
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Equivalences and cut-through properties

An important part of applying an equivalence is testing its hypotheses

Example: knowing that 𝑓 is subadditive, we can simplify 𝑓 ⊗ 𝑓 = 𝑓

To test subadditivity, we need to verify  that 𝑓 ⊗ 𝑓 = 𝑓

Recall that 𝑓 may be an expression
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Equivalences and cut-through properties

Core idea: while testing properties, many computations can be skipped if the 
results in literature are cleverly used
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⊗

⬚ +

𝛾𝑟,𝑏 𝛾𝑟,𝑏

The convolution is (surely) subadditive if its operands are

The subadditive closure is subadditive

The sum is (surely) subadditive if its operands are

Token-bucket arrival curves are subadditive

So we can conclude this expression is subadditive without 
computing it and its self-convolution

Nancy.Expressions is designed to take advantage of these 
inferences avoiding unnecessary computations

𝛾𝑟1,𝑏1 + 𝛾𝑟2,𝑏2 ⊗⬚



Optimizing with Equivalences - Syntax
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{

     f in U subadditive;

     g in U zero-at-zero;

     f <= g;

     f * g well-defined;

} == > f * g = f

In code Using an ad-hoc syntax

var equivalence = new Equivalence(

  leftSideExpression: Expressions.Convolution(

    Expressions.Placeholder("f"),

    Expressions.Placeholder("g")),

  rightSideExpression: Expressions.Placeholder("f")

);

equivalence.AddHypothesis("f", f => f.IsSubAdditive);

equivalence.AddHypothesis("g", g => g.IsZeroAtZero);

equivalence.AddHypothesis(

    "f", "g", (CurveExpression f, CurveExpression g) => f <= g);

equivalence.AddHypothesis(

    "f", "g", (f, g) => f.Convolution(g).IsWellDefined);



Optimizing with Equivalences - Limitations

In its current state, application is automated but manually triggered.

The user is expected to know which equivalences may help

A valuable goal of this is to transparently apply known equivalences to optimize

This is a non-trivial, with different challenges
◦ What is the cost of looking for matches and verifying the hypotheses?

◦ What is the time saved by using the equivalence?

◦ What about substitutions that enable other equivalences?

◦ How should we limit the exploration overhead vs. the computation time?
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Optimizing with computation scheduling - insights
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The difference comes from wasted computations

Nancy can minimize the result after a computation, but also uses optimizations 
that skip unnecessary ones before

A “good path” has good intermediate operations that avoid useless computations 
that are later discarded

Addressing associativity is more complicated, but has several advantages
◦ A larger search space should include lower minima

◦ Can exploit parallelization on multicore systems

◦ Can be mixed with other results, e.g. convolutions of convex/concave/subadditive functions



An abstraction hierarchy
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Abstraction Level Possible optimizations Software

DNC and system model How the system model is expressed 
into curves, e.g. a strict service 
curve can be replaced by its 
superadditive closure.

Your analysis tool, ??

(min,+) and (max,+) expressions Use algebraic properties to 
compute the expression faster

Nancy.Expressions, NC Maude?

(min,+) and (max,+) operations Use algebraic properties to 
compute the operation faster

Nancy, RTC toolbox
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